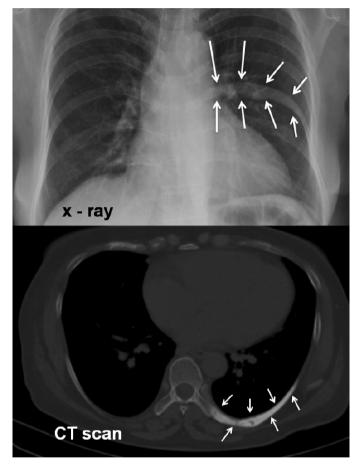
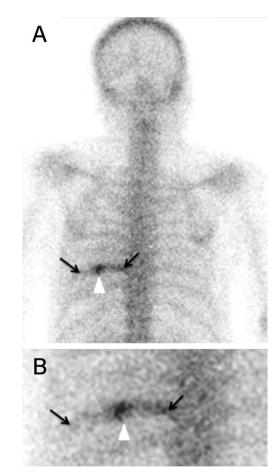
IMAGES IN HEMATOLOGY


DOI: 10.4274/tjh.galenos.2019.2018.0419 Turk J Hematol 2019;36:117-119

Osteoblastic Solitary Plasmacytoma of Bone

Kemiğin Osteoblastik Soliter Plazmasitomu


Chrissa Sioka¹
Konstantinos Sakelariou¹
Alexandra Papoudou-Bai²
Christos Tolis³
Jihand Al-Boucharali¹
Andreas Fotopoulos¹

¹School of Health Sciences, University Hospital of Ioannina Faculty of Medicine, Department of Nuclear Medicine, Ioannina, Greece ²School of Health Sciences, University Hospital of Ioannina Faculty of Medicine, Department of Pathology, Ioannina, Greece ³Oncoderm Center, Ioannina, Greece

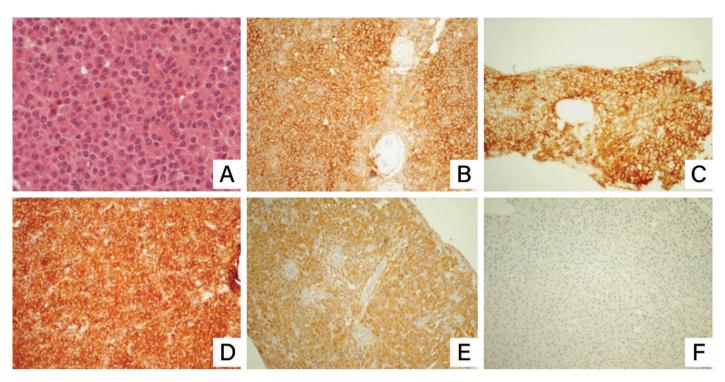
Figure 1. Chest X-ray (upper panel) revealing a hyperdense lesion in the left 8th rib (arrows); the computed tomography scan of the chest (lower panel, arrows) documented the abnormality.

CT: Computed tomography.

Figure 2. Whole-body bone scan with Tc-99m-methylene diphosphonate demonstrated increased radionuclide uptake, indicating an osteoblastic lesion in a large portion of the rib (arrows), with intense focal uptake (arrowhead).

©Copyright 2019 by Turkish Society of Hematology

Turkish Journal of Hematology, Published by Galenos Publishing House


Address for Correspondence/Yazışma Adresi: Chrissa SIOKA, M.D.,

School of Health Sciences, University Hospital of Ioannina Faculty of Medicine, Department of Nuclear Medicine, Ioannina, Greece

Phone : +30 26510 07514

E-mail: csioka@yahoo.com ORCID-ID: orcid.org/0000-0002-2184-4945

Received/Geliş tarihi: December 02, 2018 Accepted/Kabul tarihi: February 26, 2019

Figure 3. Histological examination of the bone lesion revealed plasma cell infiltrate (3A, hematoxylin and eosin staining, magnification 600×). The neoplastic cells were CD138-positive (3B, DAB, magnification 200×) and CD38-positive (3C, DAB, magnification 200×) and expressed IgA (3D, DAB, magnification 200×). Immunostainings for kappa and lambda light chains showed cytoplasmic light chain positivity (3E, DAB, magnification 200×) and absence of kappa light chain (3F, DAB, magnification 200×).

A 54-year-old woman was subjected to a routine annual chest X-ray for work license renewal, which showed a hyperdense lesion of the left 8th rib (Figure 1). A chest computed tomography (CT) scan documented this abnormality, which was considered to represent Paget's disease, bone metastasis, or a primary bone tumor.

A whole-body bone scan showed increased radionuclide uptake (Figure 2), indicating an osteoblastic lesion in a large portion of the rib (arrows), with intense focal uptake (arrowhead).

Diagnostic biopsy and histological examination of a tissue specimen from the affected rib (Figure 3) revealed dense infiltration of plasma cells (Figure 3A, hematoxylin and eosin stain, 600[×]). Immunohistochemically, the cells expressed CD138 (Figure 3B, DAB, 200[×]) and CD38 (Figure 3C, DAB, 200[×]) and were IgA-positive (Figure 3D, DAB, 200[×]). Immunostaining showed lambda light-chain restriction (Figure 3E, DAB, 200[×]) with no expression of kappa light-chain (Figure 3F, DAB, 200[×]), consistent with plasma cell neoplasm. The bone marrow biopsy obtained from the left iliac crest was free of neoplastic invasion. An X-ray of the axial skeleton and long bones and a CT scan of the skull and thorax were performed, which did not reveal any additional bone lesions. Laboratory test results demonstrated normal creatinine (0.73 mg/dL) and total calcium (9.6 mg/dL) levels. The results of the

complete blood count showed a white blood cell count of $3.39 \times 10^3/\mu$ L with no other remarkable findings. B2 microglobulin was 2091 μ L (normal range: 700-3400) and alkaline phosphatase was 40 IU/L (normal range: 30-125). Serum free light-chains were absent and there was no serum or urine monoclonal paraprotein detection. Taking into consideration all of the above-mentioned findings, a diagnosis of osteoblastic solitary plasmacytoma was made.

Solitary osseous plasmacytoma consists of a mass of neoplastic monoclonal plasma cells associated with bone osteolysis [1,2]. During diagnostic workup, fludeoxyglucose-positron emission tomography should be performed, if available, to rule out smoldering multiple myeloma and monitor response to treatment [3,4]. Solitary osteolytic bone plasmacytomas, although rare, have been reported in several bone areas such as the lumbar spine vertebra, the sternum, or even the ribs [2,5]. However, plasmacytoma exhibiting osteoblastic characteristics such as in our case is extremely rare and deserves further investigation.

Keywords: Plasmacytoma, Bone scintigraphy, Multiple myeloma

Anahtar Sözcükler: Plazmasito, Kemik sintigrafisi, Multipl myelom

Informed Consent: Received.

Conflict of Interest: The authors of this paper have no conflicts of interest, including specific financial interests, relationships, and/or affiliations relevant to the subject matter or materials included.

References

1. Hartshorne MF, Cawthon MA, Bauman JM. Plasmacytoma of the lumbar spine by SPECT. Clin Nucl Med 1986;11:65–66.

- 2. Solav S. Bone scintiscanning in osteolytic lesions. Clin Nucl Med 2004;29:12-20.
- Albano D, Bosio G, Treglia G, Giubbini R, Bertagna F. 18F-FDG PET/CT in solitary plasmacytoma: metabolic behavior and progression to multiple myeloma. Eur J Nucl Med Mol Imaging 2018;45:77-84.
- Nanni C, Rubello D, Zamagni E, Castellucci P, Ambrosini V, Montini G, Cavo M, Lodi F, Pettinato C, Grassetto G, Franchi R, Gross MD, Fanti S. 18F-FDG PET/CT in myeloma with presumed solitary plasmocytoma of bone. In Vivo 2008;22:513-517.
- Tajima K, Uchida N, Azuma Y, Okada T, Sasamoto H, Yokoo H, Kuwano H. Surgical resection of a solitary plasmacytoma originating in a rib. Ann Thorac Cardiovasc Surg 2014;20(Suppl):609-612.