
Thrombosis is a complex and dynamic phenome-
non, involving interaction of endothelial and blood
cells, plasma clotting, fibrinolysis and hemorrheologic
factors. Platelets play an essential role in the process of
thrombosis[1]. Interaction of platelets with collagen
and/or thrombin initiates a complex biochemical sequ-
ence of signal transmission resulting in a functional
cell response. 

There are several signal mechanisms involved in
platelet activation, including specific receptors, G pro-
teins, phosphatidyl inositol metabolism, synthesis of
thromboxane A2 (TXA2) and other eicosanoids, chan-
ges in cytosolic calcium, and protein phosphorylation,
in serine/threonine and tyrosine residues[2]. These sig-
nal mechanisms result in a conformational change in
the GP IIb IIIa receptor, platelet secretion, platelet–pla-
telet aggregation, exposure to procoagulant phospholi-
pids in the membrane, clot retraction, and synthesis of
different metabolic products. 

We have found that the products released by acti-
vated platelets have a proaggregating action on the tar-
get platelets, favoring platelet recruitment and throm-

bus growth[3-5]. To study these processes, we have de-
veloped an experimental procedure that allows activa-
tion and platelet recruitment to be assessed separa-
tely[4-6].

Platelets, leukocytes and erythrocytes appear in the
thrombus[7]. This might indicate that the interaction of
platelets with other blood cells is important in regulati-
on of the process of thrombosis. Platelet–leukocyte in-
teraction inhibits platelet reactivity, whereas erythrocy-
te–platelet interaction enhances it[3-6]. It has also been
shown that this cell interaction alters the antithrom-
bocytic effect of aspirin and dipyridamole[4-15]. 

A well-documented example of this intercellular
interaction is the transcellular metabolism of eicosano-
ids, which occurs among different blood cells, and bet-
ween blood and endothelial cells[16,17]. In this process,
arachidonic acid, compounds of their intermediate me-
tabolism or the specific final products of the metabo-
lism of one cell are changed by another one into speci-
fic products of the second, or into new compounds
which neither cell can synthesize in an independent
manner[16]. Metabolic cooperation in the synthesis of
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lipid mediators occurs through various cellular interac-
tions, including interactivus between platelets and en-
dothelial cells, platelets and neutrophils, platelets and
erythrocytes, endothelial cells and neutrophils, and ne-
utrophils and erythrocytes[18-23].

Platelet–neutrophil  interaction:  Experimental stu-
dies suggest that polymorphonuclear neutrophils
(PMNs) play a role in thrombosis[24]. It is thought that
PMNs play a role in vascular disease through their ca-
pacity to adhere to endothelial cells and aggregate du-
ring acute inflammatory processes[25,26]. Activated
PMNs release into the micro environment azurophillic
granules, rich in proteases, and oxygen radicals, which
may damage endothelial cells, disrupting their throm-
boregulating function[27-29]. Moreover, PMNs partici-
pate in thrombotic events by contributing to coagulant
processes and by modulating different stages of the
process of thrombosis[30]. 

There are conflicting reports on the role of PMNs
in the process of thrombosis[31]. Some authors report
that PMNs stimulate platelet activation, whereas others
report inhibition by PMNs[6,12,32-38]. These conflicting
results may arise from differences in experimental con-
ditions between studies, in particular whether PMNs
are studied at rest or after stimulation and whether
whole cells or isolated compounds derived from stimu-
lated leukocytes, such as the cathepsin G or oxidant
products, are assessed. Various mechanisms by which
PMNs might inhibit platelet function have been sug-
gested: Synthesizing nitric oxide (NO), modulating
synthesis of eicosanoids, modifying glycoproteins of
the platelet membrane, generating H2O2 and other oxi-
dants, membrane ADP-arg, or other mecha-
nisms[6,12,34-42]. Physical proximity between cells is
favored by P-selectin, an adhesion protein exposed on
the membrane of activated platelets, which binds to a
specific receptor in the PMNs, PSGP-1, and between
the GP IIb IIIa on platelets and ß2 integrin on
PMNs[33,43,44]. 

Aspirin amplifies the inhibiting effect of PMNs on
thrombocytic reactivity, although it does not change
the capacity of the platelets to expose P-selec-
tin[6,12,13,37,45-47]. Thus, aspirin may not modify other
processes depending on P-selectin that are important in
the PMN-platelet interaction, such as the recruitment
of PMNs by activated platelets to the forming throm-
bus in the area of vascular damage, or fibrin formation

mediated by platelet P-selectin leading to the expressi-
on of tissue factor in leukocytes[30,44,48].

Role  of  erythrocytes  in  hemostasis  and  thrombosis:
Erythrocytes (RBCs) also play a role in thrombogene-
sis[10,49]. This was first reported by Duke in 1910, who
found that the prolonged bleeding times in anemic pa-
tients became normal after the hematocrit was incre-
ased[50]. This clinical association between bleeding ti-
mes and the hematocrit were confirmed by other aut-
hors[51-54]. Erythrocytes have also been involved in at-
herothrombotic processes and associated with establis-
hed risk factors such as diabetes, hypercholesterole-
mia, and hypertension[51,55-63].

Erythrocytes may participate in thrombus formati-
on, changing the hemorrheologic properties of blood,
modulating the antiaggregating action of the blood ves-
sels, inactivating prostacyclin, eliminating NO (EDRF)
and influencing thrombocytic function, although it has
no effect on the ecto-ADP loops of the vascular endot-
helium[64-72].

Effect  of  the  erythrocytes  on  thrombocytic  reacti-
vity:  Erythrocytes act on platelets by physical and bi-
ochemical mechanisms[73,74]. Hellem and Gaarder re-
ported for the first time in 1961 on the capacity of
erythrocytes to increase thrombocytic function; in this
study, platelet adhesiveness to glass increased in the
presence of erythrocytes[75]. These authors suggested
that ADP released by lysis or cellular microlysis of
erythrocytes could be the biochemical factor respon-
sible for increased adhesion-aggregation of platelets in
the presence of erythrocytes[76]. It was later shown that
erythrocytes increase platelet adhesion and thrombus
formation in damaged endothelium[77]. They correct
adhesion defects in patients with “storage pool defici-
ency (SPD)” depending on the hematocrit, they incre-
ase spontaneous platelet aggregation, enhancing plate-
let aggregation due to collagen, they increase platelet
activation and recruitment and they shorten the forma-
tion time of the thrombus in the platelet function analy-
zer PFA-100[4,5,14,63,78-82]. 

The biochemical mechanisms that regulate the ef-
fects of erythrocytes on platelet function are not well
known. We have shown that erythrocyte–platelet inte-
raction increases in the presence of cellular stimulati-
on, both by ADP concentration (7 times) and ATP (5 ti-
mes); this occurs without erythrocyte lysis[5]. It is
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worth mentioning that the potentiating effect of eryth-
rocytes on the erythrocyte reactivity requires the simul-
taneous presence of activated platelets and intact eryth-
rocytes[4,5]. The prothrombotic effect of erythrocytes
does not occur in the presence of platelet stimulation or
erythrocyte lysis. This suggests that, under experimen-
tal conditions, the effect of erythrocytes is related mo-
re to metabolic than physical factors, requiring the cel-
lular integrity of the erythrocyte. 

Erythrocyte–platelet interaction increases hydroly-
sis of the arachidonic acid of the phospholipids, as well
as the metabolism of the platelet enzymes cyclooxyge-
nase and lipooxygenase[4]. This interaction increases
the release of eicosanoids and arachidonic acid to the
cellular microenvironment, which could stimulate ot-
her platelets and provide the substratum needed for the
transcellular metabolism with other blood cells. An
example of this effect may be how the PMNs use the
arachidonic acid in a thrombus formation to generate
LTB4 from the arachidonic acid released by the plate-
lets[83]. 

Erythrocyte–platelet interaction also leads to a sig-
nificant increase in release of TXA2 and 12-HETE and
generates proteolytic activity, which may participate in
the erythrocyte effect on platelet activation[4,84,85].
This interaction also releases free radicals and iron,
which may favor increased platelet activation[86,87].
More recently, we have shown that erythrocytes incre-
ase the activation of platelet glycoprotein IIb IIIa, pla-
ying a regulating role in the intracellular biochemical
mechanisms of platelet signaling[88,89]. Nevertheless,
our knowledge of platelet-erythrocyte interactions re-
mains incomplete, since not only do erythrocytes mo-
dify the biochemical and functional responses of plate-
lets, but products released by platelets, such as PGE2 or
serotonin, may induce changes in erythrocyte metabo-
lism, fragility and deformability[90-93].

Erythrocyte–platelet  interaction:  Effect  of  aspirin:
In high-risk patients, cardiovascular or neurological
thrombotic episodes may be favored by increased pla-
telet activation in areas of endothelial damage or pla-
que rupture[94]. Thus, inhibition of platelet function is
important in the prophylaxis and treatment of ischemic
and thrombotic processes in these patients. The drug of
choice in these cases, aspirin, reduces morbidity due to
vascular causes in about 15% of patients, and new non-
fatal accidents in 30% of patients[95]. Treatment with

aspirin is not protective in a high proportion of pati-
ents, however, and new therapies are needed to reduce
thrombotic risk in these patients.

Aspirin inhibits synthesis of TXA2 in an irreversib-
le manner[96]. Thrombotic events in patients treated
with aspirin could be due to biochemical mechanisms
of platelets that surpass the aspirin effect. This might
occur because of exposure of platelets to high concent-
rations of collagen or thrombin, or possibly ADP. Un-
der these conditions, platelets do not require the amp-
lification action of thromboxane to produce a proagg-
regation response, i.e., platelet activation is stimulated
by cyclooxygenase 1 (COX-1) independent mecha-
nisms[97,98]. 

We have found experimental evidence that aspirin
not only acts on platelets by inhibiting COX-1, but al-
so exerts a direct effect on erythrocytes, reducing their
prothrombotic potential under certain conditions[5,14].
This newly identified antithrombotic effect of aspirin
occurs when platelets of patients treated with aspirin
(500 mg) are stimulated with low doses of collagen
(0.5-1 µg/mL). Under these conditions, the platelets
alone are completely inhibited and the erythrocytes of
the same donor, also treated with aspirin, produce no
increase in platelet stimulation. Conversely, erythrocy-
tes obtained from the same patients before aspirin ad-
ministration can significantly stimulate the aspirinized-
platelets[5]. Thus, it seems reasonable to suggest that a
greater beneficial clinical effect could be achieved by
blocking the prothrombotic effect of erythrocytes with
appropriate doses of aspirin.

Experimental data indicate that the prothrombotic
effect of erythrocytes is inhibited, in a dose-dependent
manner, by 50–500 mg of aspirin; nearly-complete in-
hibition occurs after two hours of a single dose of 500
mg[14]. Moreover, the antithrombotic effect of 500 mg
of aspirin on erythrocytes is reversible after some time
and disappears within few days[14]. Therefore, we as-
sessed whether a low daily dose of aspirin could main-
tain the effect of the initial dose of 500 mg for a longer
time. To evaluate this possibility, normal donors were
given an initial dose of 500 mg of aspirin, followed by
50 mg/day. This dosage reduced the prothrombotic ef-
fect of erythrocytes for 2–3 weeks, but normal conditi-
ons were restored after 3–5 weeks[14]. Thus, to control
simultaneously the prothrombotic activity of platelets
and erythrocytes in normal subjects, a dose of 500 mg
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every 15 days along with a daily dose of 50 mg seems
to be appropriate[14]. 

We also assessed to what extent the usual doses of
aspirin given in our medio to patients with cardiovas-
cular or cerebrovascular disease (200–300 mg/day)
were appropriate to inhibit simultaneously the proth-
rombotic actions of platelets and erythrocytes. Eighty
patients (62 with cardiovascular pathology and 20 with
stroke) were assessed. The results showed that these
doses of aspirin inhibited TXA2 synthesis in more than
94% of patients[81]. Nevertheless, when platelet recru-
itment was assessed, we found that 39% of patients
showed complete inhibition, both in the platelets alone
and in presence of erythrocytes. In 45% of patients, the
response of isolated platelets was completely inhibited,
but the inhibition was not enough in the presence of
erythrocytes. Finally, suboptimal inhibition of platelet
activity was observed in the remaining 16% of patients,
in the platelets alone and in the presence of erythrocy-
tes. Therefore, we conclude that, in almost 60% of the
patients treated with 200–300 mg aspirin/day, aspirin
was not sufficient to block the platelet reactivity in the
presence of erythrocytes, despite the inhibition of
TXA2 synthesis. Another finding of interest is that, in
aspirin treatment, a larger proportion of cerebrovascu-
lar compared with cardiovascular patients show subop-
timal control of platelet function when whole blood is
assessed. This may indicate that aspirin exerts a diffe-
rent effect on the platelet response in different vascular
areas, which could be stronger in coronary than brain
areas[99]. Moreover, we have observed that the effect of
aspirin is not homogeneous in all patients, consistent
with other reports; drug resistance has been reported in
some patients[100,101]. 

In further studies, we proved that 500 mg of aspirin
can inhibit the prothrombotic effect of erythrocytes in
different groups of patients, as has been observed in
normal subjects[14]. In contrast the daily dose of 50
mg/day is clearly not enough in vascular patients, espe-
cially in the presence of erythrocytes, although TXA2

synthesis is inhibited[14,102]. Thus, at present we are as-
sessing the efficacy of a dose of 500 mg every 15 days,
and higher daily doses of 100 and 200 mg given once
daily, or the same dose divided in two intakes every 12
hours. Preliminary results of this on-going study sug-
gest that better control of platelet recruitment in whole
blood is achieved with a loading dose of 500 mg per

day every 15 days, with a daily maintaining dose of
100 or 200 mg/day, compared with a dose of 200–300
mg/day given in a continuous manner[103]. These data
show that the dose of aspirin is important for the cont-
rol of the prothrombotic effect of erythrocytes. Further-
more, we have found that the same dose of aspirin gi-
ven every 12 hours significantly increases the inhibiti-
on of platelet recruitment in whole blood. We believe
that this could be related to platelet turnover. The daily
platelet turnover in normal subjects is about 10%, and
turnover increases in patients with atherosclerosis[104-

106]. Four hours after aspirin administration, platelets
with active cyclooxygenase can be found in the blood
circulation[107]. From a functional point of view, it is
known that platelet activation can be maintained by a
residual capacity of TXA2 synthesis of 10% in aspirin-
trealed platelets; among platelets treated with aspirin
only, a small number of functional platelets exhibit inc-
reased reactivity, both in vitro and in vivo, in thrombus
formation[108,109]. We have also shown that, when only
7% of the platelets are left untreated with aspirin, pla-
telet recruitment occurs. Thus, the effects mentioned
above account for better control by aspirin given every
12 hours, since it reduces the number of platelets not
treated with aspirin. 

At present, it is known that aspirin is effective in a
wide range of doses from 50 to 1500 mg/day; in high-
risk patients, any of these doses reduces vascular
events to a similar extent[95,99]. This is consistent with
the hypothesis that the effect of aspirin on platelet
COX-1 is saturable and shows no dose-dependence[99].
Nevertheless, the optimal dose of aspirin is still a cont-
roversial issue. Since there are gastrointestinal side ef-
fects (which are dose-dependent) and risk of hemorrha-
ge (not dose-dependent), it seems advisable to recom-
mend the minimal effective dose in each type of vascu-
lar pathology[99,110,111]. There are other effects of aspi-
rin which are not associated with TXA2 synthesis, such
as effects on coagulation, fibrinolysis, trombin genera-
tion, or the prothrombotic effect of erythrocytes menti-
oned above[99]. These effects of aspirin are not related
to the synthesis of eicosanoids and are less characteri-
zed than the effects of aspirin on COX-1 but probable
play also a role on thrombogenesis. The average doses
recommended by different scientific consensus inhibit
COX-1 in platelets. However as suggested by our data,
some of aspirin’s mechanisms of action, such as the ef-
fects on erythrocytes or leukocytes, may play also an
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important role in the occurrence of ischemic and
thrombotic events. Thus, to allow prescription of the
minimal effective dose, we advise that the antithrom-
botic effect of aspirin should be assessed in each pati-
ent in platelets and in whole blood.
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