JOURNAL OF ENGINEERING SCIENCES SAYFA : $15-20$

ANTALYA-MANAVGAT-ALARA SOL SAHIL SULAMASINDA OPTIMUM SU KULLANIMI ÜZERINE BİR ARAŞTIRMA

M. Haluk ÇELİK, Recep KANIT, Fatma ZORLU
Gazi Üniversitesi, Teknik Eğitim Fakültesi, Yapı Eğitimi Bölümü, Ankara

ÖZET

Bu çalışmada, Devlet Su isşleri tarafindan 1985 yılında işletmeye açılan Alara Sol Sahil Sulama alanında optimum su kullanım modelinin belirlenmesi araştırılmıștır. Fiziksel etkinliği belirlemek için yapılan ölçümlere göre, su iletim randımanı $\% 90$ olarak bulunmuştur. Proje alanı için optimum bitki deseni doğrusal programlama yöntemi ile belirlenmiş ve sulama sistemi işletme durumu CROPWAT programı ile değerlendirilmiştir.

Anahtar Kelimeler: Sulama, Optimizasyon, Su kullanımı

A STUDY ON THE OPTIMAL WATER USAGE AT LEFT COAST IRRIGATION SYSTEM OF ANTALYA-MANAVGAT-ALARA

Abstract

ABSTACT

In this study, an attempt was made to determine the optimum water use model of the Alara Irrigation Project which was put into operation in 1985. Water conveyance efficiency of the project is determined by using an LP program. Economic evaluation of the project area for the planned existing and future conditions was analysis by using DASI program. Irrigation on water management problems was evaluated by applying FAO- CROPWAT program.

Key Words: Irrigation, Optimization, Use of water

1. GíRiş

Günümüzde sulama zamanının planlanması bilgisayar yazilımh eşit benzeşim modelleri yardımı ile yapılabilmektedir. İklim, toprak bünyesi ve su kaynağı yetersizliğinin farklı değerierine göre; herhangi bir bitkinin sulama zamanmin planlanmasına çok farklı veriler için kısa sürede alternatif çözümler bulunabilmekte ve optimum çözüme ulaşılabilmektedir. 1985 yillında kısmen işletmeye açılan Alara Sol Sahil Sulaması'nda, kısmen sulamaya açılan alan 34800 , fiilen sulanan alan 26450 ve sulama oranı \%76'dr. Sulama alanında iyi bir su dağııım sisteminin kurulamaması, tesis eksikliği ve yetersizliği, su kaybının fazla
olması ve organizasyon bozuklukları projenin seçilmesinde etkili olmuştur. Çalışmada proje alanındaki fiziksel etkinlikler ile proje alanı için bitki su ihtiyacı, ve sulama alanı kastt alınarak net faydayı maksimize eden bitki deseni, cogrrusal model kurularak belirlenmiştir.

2. MATERYAL VE METOD

2.1 Konum

Araştırma alanı, Türkiye'nin güneyinde Antalya havzasinda 36.3° ile 37.0° enlemi ve 2.0° ve 3.0° boylamı arasında yer almaktadır. Kuzeyde Toros

Dağları, güneyde Akdeniz, batıda Alara Çayı ile havzası ve doğuda Toros Dağları ile çevrili olup toplam 3488 hektar araziden oluşmaktadır. Proje sahasının büyük bir kısmı ovalık, diğeri ise arızalı tepelik kısımlar üstündeki ekilebilir alanlardır. Sulama alanıın en önemli akarsuyu Alara Çayı'dır. Alara Çayı; Gündoğmuș kazasının güneydoğusunda Çakalsakmak, Oğuz, Yukarıbük ve Alıkpazı derelerinin birleşmesi ile meydana gelir. Bölgenin sularını da toplayan Alara Çayı Alanya ile Manavgat arasında denize dökülür.

2.2 Jeolojik Durum

Sulama alanı; kil taşı, kum taşı, marn ve konglomeradan oluşan miyasen yaşındaki molozlarla, genellikle grenaltı, mikaşist, kuarsiste, anfibolitşistlerden oluşan polezoik kayaçlardır.

2.3 İlim Durumu

Alanya Meteoroloji İstasyonu ve Devlet Meteoroloji İşleri Genel Müdürlüğü verilerine göre; proje sahasında yıllık yağı̧̧ miktarı 1688.2 mm olup yağışın büyük bir kısmı kış aylarında düşmektedir. En küçük nisbi nem Temmuz ayında (\%58) ve en yüksek nisbi nem Aralık ayında (\%70)'dir. Proje alanında buharlaşma miktarı 773 mm olup bunun 37.3 mm 'si bitki yetişme mevsimi içinde gerçekleşmekte; buharlaşma miktarında 268.8 mm 'lik fark olduğu görülmektedir.

2.4 Toprak ve Su Kaynakları

2.4.1 Toprak Kaynakları

Sulama sahası topraklarının \% 28.38^{\prime} ini ağır bünyeli, $\% 17.68^{\prime}$ 'ini orta bünyeli topraklar oluşturmakta, üst kısımların ağır, alt kısımların orta bünyeye sahip olduğu topraklar da $\% 13.44^{\prime}$ 'ü bulmaktadır. Toprak bünyesinde $\% 5$ oranında kireç mevcuttur.

Proje sahası toprak üzerinde tuzluluk ve alkalilik bakımından problem bulunmaktadır. Alara Sol Sahilinde 2731 hektar arazi sulanabilir durumdadır.

2.4.2 Proje Alanında Sudan Yararlanma Durumu

Şebekenin işletmeye alındığı son beş yılda sulama oranı \%42 iken (Anonim, 1989), 1992 yılinda bu oran $\% 97.93$ 'e ulaştığı görülmektedir. Bu durum; her yıl projeye dahil edilen alan arturlırken, fiilen sulanan alanın artırilmamasından ileri gelmektedir.

2.5 Sulama Şebekesinin Elemanları ve Özellikleri

Alära Çayında su, Alarahan yolu üzerinde Sarıağalar tepesi yönünde mevcut kurbtan tek taraflı olarak +15.0 m kotunda ve $2.31 \mathrm{~m}^{3} / \mathrm{sn}$ kapasiteli prizle alınmaktadır. Yüksek kotlardaki sulama sahasına iletebilmek için yaklaşım kanalından sonra bir pompa istasyonu tesis edilmiştir. Pompaj yerinde su kotu minimum 15.0 m , pompaj yüksekliği 45.0 m ve pompaj debisi $2.3 \mathrm{~m}^{3} / \mathrm{sn}^{\prime}$ dir.

Pompaj binasında $3.500=1500 \mathrm{~kW}$ gücünde üç ünite ile 500 kW gücünde bir yedek ünite bulunmaktadır. Enerji 1 km mesafedeki ManavgatAlanya ana hattından getirilmiş ve pompaj binasının yanında trafo ve santral binası yapılmıştır.

Alara Çayından alınan su +60 m kotundaki dağılım havuzuna $\mathrm{D}=1.0 \mathrm{~m}$ çapında ve 500 m uzunluğundaki cebri boru ile iletilmektedir. Proje sahasındaki 1. ünite ile 2. üniteye su ileten ana kanallar betonarme olarak inşaa edilen su dağıtım havuzundan su almaktadır.

873 ha'lık 1. üniteye hizmet edecek olan ana kanalın toplam boyu 4.625 km 'dir. Tamamı kanalet sisteminde olan bu kanalın başlangıç kapasitesi $0.359 \mathrm{~m}^{3} / \mathrm{sn}$ 'dir.
2. Üniteden Alara Sol Sahil Ovası'na hizmet edecek olan ana kaynak klasik olarak inşaa edilmiştir. Toplam uzunluğu 34.500 km olan bu ana kanalın başlangıç kapasitesi $3.072 \mathrm{~m}^{3} / \mathrm{sn}^{\prime}$ dir.

2.6 Toprak Örneklerinin Alındığı İnfilitrasyon Hızlarının ve Su iletim Kayıplarının Ölçüldüğü Yerler

Araştırmada materyal olarak kullanılan toprak örnekleri, 8 ayrı profilden alınmıştr. Profil yerleri DSİ Planlama ve Tasnif Haritasından faydanılarak, hakim olan toprak serilerinden seçilmiştir (Anonim, 1984).

Infiltrasyon ölçümleri araştırma alanında toprak örneklerinin alındığı profiller yakınında yapılmıştrr. Su iletim kayıplarını belirlemek için kanallardaki su hızı ölçümieri Sol Sahil sulaması ana kanalı ve yedek kanalında yapılmıştır. Toprak örneklerinin alınmasında toprak burgusu, toprak küreği, şerit metre ve örnek torbaları; infilitrasyon hizı ölçümlerinde çift silindir, infilitrometre, terazi ve şerit; su hızı ölçümlerinde ise E.I.E.'den temin edilen dijital muline kullanılmıştır.

2.7 Metod

Araştırma alanında yetiştirilen bitkilerin su tüketimleri FAO tarafindan geliştirilen CROPWAT paket programı kullanılarak belirlenmiştir (Anonim, 1988). Program yardımıyla alana ait meteorolojik veriler kullanılarak bitki su tüketimleri Modifiye Penman yöntemiyle hesaplanmıştır (Doorenbas ve Pruit, 1977).

Çalışma için gerekli bitki verileri FAO 24 ve FAO 33 'den alınmıştr. Anonim, 1988 'de verilen bitki ve toprak değerlerine göre bitkilerin sulama zamanları belirlenmiştir. Penman eșitliği olarak;
$E_{T A}=\left[W \times R_{n}+\left(1-W \times f(u) \times\left(c_{4}-c_{4}\right)\right]\right.$
kullanılmıştır. Bu eşitlikte; $\mathrm{E}_{\text {TA }}$: Referans bitki su tüketimini ($\mathrm{mm} / \mathrm{gün}$), C : Düzeltme faktörünü, W : Ağırlk faktörünü, R_{n} : Net radyasyonu ($\mathrm{mm} / \mathrm{gün}$), $f(u)$: Rüzgar fonksiyonunu, e_{a} : Ortalama hava sıcaklığında doygun buhar basıncını (mb), e_{d} : Ortalama hava sıcaklığında gerçek buhar basıncını (mb) göstermektedir.

Etkili yağış içinde;
$\mathrm{P}_{\text {eff }}=\mathrm{P}_{\mathrm{o}}(1-0.2 \mathrm{P}-\mathrm{OP} / 100) \quad \mathrm{P}_{\mathrm{o}}<250 \mathrm{~mm}$
$\mathrm{P}_{\mathrm{eff}}=125+0.1>250 \mathrm{~mm}$
eşitlikleri kullanılmıştır. Eşitliklerde; $\mathrm{P}_{\text {eff: }}$ etkili yağısıı $(\mathrm{mm}), \mathrm{P}_{0}$: aylık ortalama yağışı $(\mathrm{mm}), \mathrm{P}_{\text {top }}$: son 5 yılm aynı aydaki yağışların toplamı (mm) göstermektedir.

Sulama zamanının planlanmasınıda toprak-su dengesi esas alınmış ve sulama mevsimi başlangıcında toprağın tarla kapasitesinde olduğu kabul edilmiştir. Bu hesaplama içinde ;

$$
\begin{equation*}
S M D_{1}=S M D_{l-1}-E_{T A}+P_{\text {eff }}+d_{l i r} \tag{3}
\end{equation*}
$$

formülü kullanılmıştır. Formülde; $\mathrm{SMD}_{\mathrm{i}}$: " I "nci gündeki toprak nemini, E_{TA} : gerçek bitki su tüketimini, $P_{\text {eff }}$: Etkili yağışı, $d_{l r}$: net sulama suyu miktarını göstermektedir

2.8 Sulamaya Ait Toprak Özellikleri

Araştırma alanında 8 değişik toprak profilinden alınan toprak örneklerinin fiziksel analizleri sonucunda bulunan tarla kapasitesi, devamlı solma noktası, hacim ağırlığı, bünye değerleri ve kullanılabilir su tutma degerleri hesaplanarak Tablo

1'de verilmiştir. Bu durumda en yüksek kullanılabilir değer $150.1 \mathrm{~mm} / 90 \mathrm{~cm}$ 'dir. Ortalama kullanılabilir rutubet değeri $117 \mathrm{~mm} / 90 \mathrm{~cm}$ olarak hesaplanmıştır.

Toprakların hacim ağırlıkları $1.58-1.66 \mathrm{gr} / \mathrm{cm}^{3}$ arasında bir değişim göstermektedir. Kil miktarı yüksek bulunmuştur. Bu durum tarla kapasitesi ve solma noktası değerlerinin yükselmesine neden olmaktadır.

Tablo 1 Alara Sulama Alanının Toprak Profillerine Ait Fiziksel Analiz Sonuçları

$\begin{aligned} & \hline \text { Pr. } \\ & \text { No } \end{aligned}$	Toprak Derinliği (cm)	Toprak Bünyesi	Hacim Ağrıığı (cm)	$\begin{gathered} \hline \text { Tarla } \\ \text { Kap. } \\ \text { (\% pw) } \end{gathered}$	Devaml Solma Noktası (\%pw)	K. Su Tutma Kap. (mm)
1	$\begin{aligned} & 0-30 \\ & 30-50 \\ & 50-90 \\ & 0-90 \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 1.61 \\ & 1.65 \\ & 1.65 \end{aligned}$	$\begin{aligned} & 24.7 \\ & 27.4 \\ & 26.4 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 19.3 \\ & 17.6 \end{aligned}$	$\begin{aligned} & 32.3 \\ & 40.1 \\ & \frac{43.8}{116.2} \end{aligned}$
2		$\begin{gathered} \mathrm{C} \\ \mathrm{SCL} \\ \mathrm{CL} \end{gathered}$	$\begin{aligned} & 1.62 \\ & 1.58 \\ & 1.59 \end{aligned}$	$\begin{aligned} & 21.7 \\ & 23.4 \\ & 26.1 \end{aligned}$	$\begin{aligned} & 12.9 \\ & 17.3 \\ & 16.7 \end{aligned}$	$\begin{aligned} & 42.8 \\ & 28.9 \\ & 44.8 \\ & 116.5 \end{aligned}$
3		C C C	$\begin{aligned} & 1.58 \\ & 1.50 \\ & 1.53 \end{aligned}$	$\begin{aligned} & 23.3 \\ & 22.3 \\ & 22.7 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 12.9 \\ & 12.2 \end{aligned}$	$\begin{aligned} & 48.8 \\ & 45.1 \\ & \underline{51.4} \\ & 145.3 \\ & \hline \end{aligned}$
4		$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 1.59 \\ & 1.50 \\ & 1.62 \end{aligned}$	$\begin{aligned} & 23.5 \\ & 22.3 \\ & 22.7 \end{aligned}$	$\begin{aligned} & 12.9 \\ & 12.7 \\ & 12.2 \end{aligned}$	$\begin{aligned} & 50.6 \\ & 48.5 \\ & \underline{51.0} \\ & \hline 150.1 \\ & \hline \end{aligned}$
5		$\begin{aligned} & \hline \mathrm{SCL} \\ & \mathrm{SCL} \\ & \mathrm{SCL} \end{aligned}$	$\begin{aligned} & 1.60 \\ & 1.59 \\ & 1.59 \end{aligned}$	$\begin{aligned} & 24.5 \\ & 25.2 \\ & 26.0 \end{aligned}$	$\begin{aligned} & 17.9 \\ & 18.4 \\ & 17.8 \end{aligned}$	$\begin{aligned} & 32.1 \\ & 32.6 \\ & 40.1 \\ & 104.8 \end{aligned}$
6		$\begin{aligned} & \hline \mathrm{CL} \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 1.50 \\ & 1.59 \\ & 1.59 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 20.3 \\ & 21.2 \end{aligned}$	$\begin{aligned} & 12.4 \\ & 17.0 \\ & 16.8 \end{aligned}$	$\begin{aligned} & 36.5 \\ & 18.1 \\ & \frac{21.0}{75.6} \end{aligned}$
7		$\begin{gathered} \mathrm{C} \\ \mathrm{SCL} \\ \mathrm{CL} \end{gathered}$	$\begin{aligned} & 1.58 \\ & 1.60 \\ & 1.61 \end{aligned}$	$\begin{aligned} & 23.2 \\ & 22.0 \\ & 22.2 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 12.8 \\ & 12.6 \end{aligned}$	$\begin{aligned} & 48.4 \\ & 44.2 \\ & \underline{46.2} \\ & \hline 139.0 \\ & \hline \end{aligned}$
8		$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 1.59 \\ & 1.60 \\ & 1.60 \end{aligned}$	$\begin{aligned} & 23.4 \\ & 22.9 \\ & 22.7 \end{aligned}$	$\begin{aligned} & 12.8 \\ & 12.6 \\ & 12.4 \end{aligned}$	$\begin{array}{r} 50.6 \\ 49.4 \\ 49.4 \\ \hline 149.4 \\ \hline \end{array}$

2.9 Eklemeli İnfilitrasyon ve İnfilitrasyon Hızı

Araştırma alanında yapılan infilitrasyon deneylerinde belirlenen eklemeli infilitrasyon hızı değerlerinin zamanla ilişkisini gösteren profil Şekil l'de verilmiştir. Sabit infilitrasyon hızı $0.14 \mathrm{~cm} / \mathrm{saat}$ olarak alınmıştır, hızlar başlangıçta yüksek ve daha sonra düşüktür.

2.10 Su Kanallarından Sızma Kayıpları

Su Kanallarından Sızma Kayıpları (Balaban, 1970)'de verilen esaslara göre hesaplanmış. Tablo 2'de verilmiştir.

Şebekede ortalama sızma kaybı $3.2 \mathrm{lt} / \mathrm{sn} / 100 \mathrm{~m}$ olarak hesaplanmıştır. Ana kanal ve yedek kanalların toplam uzunlukları ve işletme durumu dikkate alındığında şebekeye verilen suyun yaklaşık \%10'undan sızma nedeniyle faydanılamadığı görülmektedir.

2.11 Optimum Bitki Deseni

Sulama alanında 3730 da'lık 1 . ünite ve 31150 da
2. ünitelerde projesiz ve projeli koşullarda bitki deseni Tablo 3'de ve alanın bütünü dikkate alınarak belirlenen optimum bitki deseni Tablo 4 'de verilmiştir

Sulama alanında uygun su dağıtımına göre bulunan bitki deseni, mevcut duruma göre muz ve narenciyede yakın; buna karşılık sebzede 10 kat fazla görülmektedir.

Şekil 1 Örnek profilde infilitrasyon hızının zamanla ilişkisi

Tablo 2 Sulama Kanallarımın Sızma Kayıpları

Kanal Mevki	$\begin{aligned} & \text { Kaplama } \\ & \text { Çeşidi } \end{aligned}$	Ölçüm Yapılan iki Nokta Arasındaki Uzaklık (m)	lik Ölçülen Akm (1/s)	t Mesafe Sonra OOlçulen Akım (1/s)	$\begin{array}{\|c} \hline \text { Sizma Kaybı } \\ (1 / \mathrm{s} / 100 \mathrm{~m}) \end{array}$	Düşünceler
$\begin{aligned} & \text { Ana Kanal 1 } \\ & 0-1+333 \mathrm{~km} \end{aligned}$	Beton	50	34.6	33.5	4.2	Kaplama Bozuk
$\begin{gathered} \text { Ana Kanal I } \\ 1+705-1+190 \end{gathered}$	Beton	50	34.0	32.4	3.2	Kaplama Bozuk
Y3 Yedek Kanal	Kanalet	50	41.0	39.0	3.3	Kanal Bakımı Yetersiz
Y3-1 Yedek Kanal	Kanalet	50	16.7	35.5	2.4	Kanal Bakımı Yetersiz
Ortalama Sızma Kaybı					3.2	

Tablo 3 Araştırma Alanının Projesiz ve Projeli Bitki Deseni

Bitkinin Adt	Projesiz Koşulda				Projeli Koşulda			
	1.ünite		2.ünite		1.ünite		2.unite	
	Ekilen Alan		Ekilen Alan		Ekilen Alan		Ekilen Alan	
	\%	(da)	\%	(da)	\%	(da)	\%	(da)
Bugday	23.5	876.5	50.0		45.0	1678.5	---	---
Pamuk	30.0	1119.0	---		---	---	---	---
Arpa	20.0	746.0	5.0		---	---	---	---
Susam	5.2	194.0	---		10.0	373.0	---	---
Fistik	2.9	108.1	---		10.0	373.0	---	---
Misir	2.9	108.1	---		---	---	---	---
Narenciye	2.4	89.5	10.0		15.0	560.0	38.0	11837.0
Sera	0.8	29.8	3.5		20.0	373.0	40.0	12460.0
Sebze	2.3	85.7	-		10.0	373.0	---	---
Muz	-	---	16.0		---	---	20.5	6385.75
Bostan	---	---	14.0		---	---	---	---

Tablo 4 Proje Alanı için Optimum Bitki Deseni

Bitki Deseni	Ekilebilecek Alan	
	$\%$	(da)
	38.0	11837.0
	40.0	12460.0
	20.5	6385.0
	1.5	4197.2

Tablo 5 Mevcut Bitki Desenine Göre Brüt Kar

| Bitkinin Adı | Ekilen Alan
 (da) | Brät Kar
 (TL/dax 1000) | Toplam Brät
 Kar (1000) |
| :--- | :---: | :---: | :---: | :---: |
| Buğday | 1678.5 | 300 | 503400 |
| Susam | 373.0 | 192 | 71616 |
| Fıstık | 373.0 | 482 | 179786 |
| Narenciye | 12397.0 | 1430 | 17727720 |
| Sera | 12833.0 | 2350 | 30157550 |
| Muz | 6385.0 | 2465 | 15739025 |
| Sebze | 373.0 | 2080 | 775840 |
| Toplam Brüt Kar | | | |

1. ve 2. Ünite olarak

Tablo 6 Optimum Bitki Desenine Göre Brüt Kar

Bitkinin Adı	Ekilen Alan (da)	Brät Kar (TL/da x1000)	Toplam Brat Kar x (1000)
Narenciye	11837.0	1.430	16926910
Sera (Sebze)	12460.0	2.350	29281000
Muz	6385.8	2.465	15740997
Sebze	4197.2	2.080	8730176
Toplam Brüt Kar			

Tablo 7 Proje Alanında Yetiştirilen Bitkilerin Penman Yöntemine Göre Hesaplanan Aylık Net Sulama Suyu İhtiyaçları (Anonim, 1990)

Aylar	Bitkiler				
	Narenciye	Sera (Sebze)	Muz	Sebze	
Ocak	\cdots	--	\cdots	---	
Subat	--	--	--	--	
Mart	--	--	0.9	---	0.9
Nisan	32.5	--	30.0	46.2	108.7
Mayıs	66.7	--	76.4	131.3	274.4
Haziran	110.5	--	123.0	166.4	399.9
Temmuz	136.3	--	164.6	6.9	307.8
Agustos	125.9	23.2	194.2	--	343.3
Eylul	124.2	46.8	163.3	---	334.3
Ekim	22.7	53.2	69.8	--	145.7
Kasım	--	4.3	4.3	---	8.6
Aralık	---	--	--	--	
Toplam	618.8	127.5	826.5	350.8	

Toprak Gübre Araştırma Enstitüsü ve bölgeden derlenen dekar başına brüt kar dikkate alındığında; mevcut duruma göre optimum bitki deseninin daha fazla gelir getirdiği Tablo 5 ve Tablo 6 'mın mukayesesinden görülmektedir.

2.12 Sulama Yöntemi

Proje alanında öngörülen bitkiler için net sulama suyu ihtiyaçları aylara göre Tablo 6 'de verildiği gibidir.

Sulama zamanı planlamasında toprakta nemin her sulamada tarla kapasitesine ulaştığı kabul edilmiş ve tarla suyu uygulama randımanı \% 60 alınmıştır. Optimum sulama koşullarında narenciye için ilk sulama 7 Mayıs olarak hesaplanmıştır. Bir sulama döneminde toplam 29 sulama yapılmaktadır. Sulamada en fazla net su ihtiyacı 49.2 mm ile ilk sulamada olmakta ve bunun içinde 70.3 mm su verilmesi gerekmektedir. Bu durumda narenciyenin sulama zamanı planlaması etkinliği \%100 olmaktadır.

Aynı şekilde optimum sulama koşullarında öngörülen bitki deseninde yetiştirilecek bitkiler için sulama sayıları; ikinci ürün sebze için 32 olarak hesaplanmıştır.

3. SONUÇ

1. Sulama alanında bitki su ihtiyacı ve uygun su dağııımı dikkate alınarak öngörülen optimum bitki deseni narenciye, sera, muz ve sebze için bütün sulama alanı baz alındığında sırayla $\% 38$, $\% 40$, \%20.5 ve \%1.5 olarak belirlenmiştir. 1992 yılında öngörülen bitki desenine ulaşılabilseydi, o yılki birim fiyatlara göre sulama alanından yaklaşık 5.5 milyar TL daha fazla gelir elde edilecekti. Bu durum dikkate alındığında önerilen bitki deseninin uygulanabilmesi için çiftçi özendirilmeli ve yoğun girdi kullanımına önem verilmelidir.
2. Sulama şebekesinde, proje alanı ki, su kaybı \%10 olarak bulunmuştur. Kanallarda su kaybını minimuma indirebilmek için çiftçilerin de bakım
onarım hizmetlerine etkin bir şekilde katılmaları sağlanmalıdır.
3. Proje alanında yetiştirilen bitkilerin aylık net sulama suyu ihtiyaçları proje alanının uzun yıllar ortalaması olan yağış değerlerine göre elde edilmiştir. Yağışın önemli düzeyde farklılık gösterdiği durumlarda, net sulama suyu ihtiyaçları o yılki yağış durumuna göre belirlenmelidir.

4. KAYNAKLAR

Anonim, 1979. Alara Sol Sahil Projesi Planlama Raporu D.S.I. Antalya Bölge Planlama ve Proje Amirliği, Antalya.

Anonim, 1984. Alara Sahil Projesi Revizyon Raporu, D.S.İ. Antalya Bölge Müdürlügữ. Antalya

Anonim, 1988 b. "Guidlinen for Using CROPWAT a Computer Programme for Design and Management of Irrigation Water Supply", National Water Projects, Workshop, Walamtari, India.

Anonim, 1988c. Türkiye'deki Büyük Sulama Projelerini İzleme ve Değerlendirme El Kitabı, Tarım Orman ve Köyişleri Bakanlığı, TCP / TUR / 6652. Ankara.

Balaban, A., 1970. Sulama Sebekelerinde Kanal ve Tarla Arkları Sızma Kayıpları Üzerine Bir Araştırma, A.Ü. Ziraat Fakültesi Yayınları, No: 455. A.Ü. Basımevi Ankara.

Balaban., A., Sönmez, N., Tekinel, O., Benli, E., Okman, C., 1986. "Sulama Organizasyon ve Yönetimi", GAP Tarımsal Kalkınma Sempozyumu, Ankara.

Doorbos, J., Pruitt, W.O., 1977. Crop Water Requirements, FAO Irrigation and Dranaige Paper No: 24 Rome, Italy.

