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ABSTRACT 
 
 

This paper deals with the stability of the boundary element method. The effects of various element sizes and time 
increments on the internal solution are analyzed. To this end, a time domain boundary element method is used. 
To achieve this, an existing BEM code for the boundary nodes is modified to optional internal nodes. Using 
appropriate time and spatial variations for the field variables, some observations on the numerical stability are 
reported. The internal solutions are presented for different β  values and discussed the reasons of unstable cases 
appeared. 
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SKALAR DALGA PROBLEMLERİNİN ÇÖZÜMÜNDE ZAMAN-DOMENİ SINIR 
ELEMANI METODU 

 
 

ÖZET 
 
 

Bu makale Sınır Elemanı Metodunun (SEM) kararlılığını konu edinir. Farklı boyutlardaki elemanların ve değişik 
zaman artımlarının dahili çözüm üzerindeki etkileri analiz edilmiştir. Bunun yapılabilmesi için, bir zaman-
domeni sınır elemanı metodu kullanılmıştır. Bu çalışma, sınır noktaları için mevcut olan bir SEM programının 
keyfi sayıdaki dahili noktalara modifiye edilerek başarıya ulaştırılmıştır. Alan değişkenlerinin nümerik 
hesaplanmasında benimsenen uygun zaman ve geometrik değişimler gözönünde tutularak nümerik kararlılık 
konusundaki bazı gözlemler kaleme alınmaktadır. Farklı β  değerleri için dahili çözümler sunularak ve ortaya 
çıkan kararsız çözümlerin nedenleri irdelenmiştir. 
 
Anahtar Kelimeler : Zaman domenli SEM, Kararlılık, Skalar dalga 
 
 

1. INTRODUCTION 
 
 

The number of works published on the time domain 
boundary element method (BEM) has been 
increased. 
 
Mansur (1983) was the first to present the general 
formulation for the two-dimensional potential 
problems in time domain. 
 

Antes (1985) generalized the formulation to more 
involved transient elastodynamic problems with 
arbitrary initial conditions. 
 
In principle, the time or space interpolation 
functions are chosen arbitrarily. However when the 
piecewise linear time interpolation function is used 
for the flux, as well as for the potential, the solution 
process is prone to become unstable (Cole et al., 
1978). In the present study the formulation based 
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upon the commonest (Sari, 2000) temporal variation 
is summarized first. 
 
Growing evidence of numerical instabilities in the 
BEMs led some researchers to work on this problem. 
(Siebrits and Peirce, 1995 and Siebrits et al., 1997) 
studied the stability properties of the direct and 
indirect time domain elastodynamic BEM and drew 
attention to evidence of instabilities. Peirce and 
Siebrits (1996) used model problems to investigate 
the stability properties in the method. Peirce and 
Siebrits (1997) again and Birgisson et al. (1999) 
focused on the problem and suggested some 
methods to improve the numerical stability of the 
method. Arai et al. (1999) also joined the discussion 
with a paper using the Laplace transformation for 
two-dimensional elastodynamic problems. Yu et al. 
(1999) suggested using the linear temporal variation 
for traction as well, in terms of the so-called linear 
θ  method, without any mathematical proof. Yu et 
al. (2000) used Galerkin type formulations to 
improve stability in the BEM scalar wave 
propagation analysis in an example. In most of the 
works carried out on the stability, the elastodynamic 
problems are used. In the present work, an acoustic 
problem is adopted to analyze the stability of the 
BEM. 
 
In numerical analysis, the explicit finite different 
methods (FDM) and finite element methods (FEM) 
have the Courant-Fredericks-Lewy (CFL) condition 
on the time step. However the BEM has not got any 
such criteria and the CFL condition cannot be 
directly applied to the BEM schemes since they are 
based on a different discretization. 
 
Therefore, an analysis of the sensitivity of the 
internal solutions to varying time steps is done for 
the scalar wave problems in the present paper. The 
effect of boundary discretizations is also discussed.   

 
 

2. THE INTEGRAL EQUATION 
 
 

The differential equation governing 2D wave 
equation for a homogeneous isotropic elastic body Ω 
enclosed by the boundary B  can be written as 
(Morse and Feshbach, 1953): 
 

φ=+φ &&fc ii
2

,                                                           (1) 
 
In this equation φ, f and φ&&  are functions of both 
position and time, and stand for potential 
displacement, body source and acceleration 
respectively, whilst c is the wave speed. Also in 

equation (1), ii,φ  and φ&&  are the second derivatives 

of the potential φ  with respect to the direction ix  
and the time t, respectively. 
 
 
Taking the corresponding domain Ω  with its 
boundary B; the fundamental solutions and the 
actual states of the differential equation (1) can be 
combined through the use of the dynamical 
reciprocity theorem (Banerjee, 1994), to give the 
following time-domain potential boundary integral 
equation,    
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Where τ−= tt* . Equation (2) states the scalar 
potential field at any point of a medium as a function 
the scalar fields on the boundary. Here iα  depends 
only upon the local geometry of the body at the load 
point .iy  In equation (2), body source and initial 
conditions are neglected. Also in the equation: 
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Where iyxr −=  and H denotes the Heaviside 

function; φ  and sφ  stand for the actual and 
fundamental solution states of the scalar potential 
respectively. Here the upper limit +t  is used to 
avoid ending the integration at the peak of the Dirac 
delta function (Morse and Feshbach, 1953). 
 
Since the radiation conditions (Eringen and Şuhubi, 
1975) are automatically satisfied, the boundary 
integral equation (2) remains valid for unbounded 
media in addition to bounded media.  

 
 

3. BEM FORMULATION 
 
 

The boundary is discretized into a number of 
straight-line elements. Over each element, the co-
ordinates are expressed by means of their nodal 
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values by using linear elements whilst the field 
variables are represented by constant elements. 
 
In principle, the time or space interpolation 
functions are chosen arbitrarily. However when the 
piecewise linear time interpolation function is used 
for the flux, as well as for the potential, the solution 
process is prone to become unstable (Cole et al., 
1978). Both for the potential and the flux, the 
piecewise constant time interpolation function was 
used for elastodynamic case by Spyrakos and Antes, 
(1986). However, Dominguez (1993) and Richter 
(1997) showed that in some cases, this approach 
gave poorer results than for the elements used in this 
study. Tian (1990) also used the constant time 
interpolation function for both field variables, and 
stated that this approach to be less stable than the 
linear time interpolation function used for both 
approximations. 
 
Thus, in this study the predominant temporal 
variation (Sari, 2000) is used to obtain a numerical 
solution of the partial differential equation. In the 
abovementioned work, the potential and its normal 
derivative are interpolated by linear and constant 
variations in time, respectively. 
 
Potentials and fluxes along the boundary are 
approximated using the interpolation functions, 
 

∑∑ φψτη=τφ
j m

mj
j

m xx )()(),(  
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where mjφ  and mjq  stand for the potential and its 
normal derivative at node j for  time tmtm ∆=  
whilst jψ  is the spatial interpolation function for the 
field variables. When the boundary nodal variables 
are constant over the element in approximation (5) 

1j =ψ . The temporal interpolation functions )(τηm  

and )(τµm  explicitly are: 
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The discretized form of equation (2) is: 
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Where; 
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and 
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Categorized form of equations (9) and (10) can be 
found in Dominguez (1993) and Sari (2000). In 
equation (8), tnt ∆=  and niφ  denotes the unknown 
potential at the load point iy , at the final time step. 
 
3. 1. Evaluation of Integrals 
 
Here, the main idea is to solve equation (4) 
numerically using spatial and temporal variations of 
boundary values. There are two types of integrals, 
singular and non-singular. The integrals become 
singular when 0r →  for the first time step. In the 
case of singularity or mn = , the integrations along 
the boundary elements shown by equation (8) are 
treated analytically (Dominguez, 1993). The non-
singular integrals are evaluated using a standard 
Gaussian quadrature with ten points. In the 21xx -
plane, to evaluate the integrals the differential is 
expressed as: 
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Where J  is the Jacobian of the transformation. 
With the discretization, equation (8) takes the 
following form, 
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The boundary B is discretized into jB , j = 1, 2,…,N, 
and the field variables are assumed to be equal to the 
value at the mid-element node for each element. 
After evaluation of all integrals, one can obtain the 
following linear algebraic equation system, 
 

nnn RXA =                                                          (13) 
 
where the right hand side nR  is the sum of terms 
over the previous steps, and the known boundary 
conditions for time step n multiplied by their 
coefficient matrix. In the last equation, nX  and nA  
are respectively the unknown vector and the system 
matrix for time step n. The details of the solution 
procedure used here can be found in                  
(Dominguez, 1993). 

 
 

4. APPLICATIONS 
 
 

In order to analyse the effects of time step size and 
elements size on the stability of the method, a scalar 
wave problem was solved at one of the selected 
internal points (25.470) using the BEM formulation 
due to a source located in a geophysical structure. 
 
If a solution process is divergent or begins to 
oscillate, then the process is called unstable. If a 
solution process requires a time step restriction from 
the user, then it is called conditionally stable, 
otherwise it is unconditionally stable. In general, a 
mathematical discussion on stability can be found in 
(Gilbert and Knobs, 1967). 
 
The CFL condition provides an upper bound on the 
time step for the explicit FDM and the FEM in 
numerical analysis. However there are no such 
criteria in the BEM and the CFL condition cannot be 
directly applied to the BEM schemes since they are 
based on a different discretization and formulation 
of the system (Pierce Siebrist, 1996). Since the 
discretized BEM equations are very complicated, 
researchers, for example, Pierce Siebrist, (1996), 
consider model problems to determine the stability 
properties. 
 
A convenient factor for measuring stability is 

xtc ∆∆=β / , with time step size t∆ , and the length 
of element x∆ . 
 
The material velocity for seawater is 1500 m/s. The 
physical geometry of the problem is given in                  
Figure 1, and boundary conditions prescribed are 
shown in Figure 2. Homogeneous and 
inhomogeneous boundary conditions are used for the 

external and internal (source) boundaries. In the 
model geometry, the source is located 35 m below 
the boundary while the receivers are placed in a 
horizontal line at 10 m below the top boundary. 
 
The lengths 1x)(∆ , 2x)(∆  and factors 1β , 2β  are 
for the external and internal boundaries, 
respectively. The physical system is a conservative 
system, so there is no energy loss. 
 
Sensitivity of time step size and element size has 
been observed in the solutions in Figures 3. The 
effect of the uniformity of the elements to the 
solutions was analyzed considering 1β  and 2β . 
 

480 m

445 m

re
ce

iv
er

s
source

470 m

c= 1500 m/s

18
0 

m

48
0 

m

 
 
Figure 1. Physical the geometry of the medium used 
to generate seismograms in the scalar BEM program 
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Figure 2. Definition of the boundary  conditions of 
the problem 
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In Figures 3a to 3c, the element lengths are 
m2(ÄÄxm,5(ÄÄx 21 == . In these cases, the problem 

was solved for different β  values. When the low 1β  

and 2β  values have been adopted, the solution 
begins to oscillate (Figures 3a, 3d and 3h), and the 
resulting disturbances do not remain arbitrarily small 
throughout the wave path. To obtain a stable 
solution, following the application of arbitrary small 
perturbations the disturbances must remain 
arbitrarily small throughout the period of the 
investigation (Gilbert Knobs, 1967). When the 
waves reach an obstacle, they are partly reflected 
and partly transmitted (Graff, 1975). 
 
When high 1β  and 2β  values are used (see Figures 
3c, 3g and 3j), small responses in the medium cannot 
be seen. In other words, for very large time step size 
small disturbances in the body are invisible. 
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Figure 3a. Potential φ  versus time; for point 
(25.470) with 15.01 =β , 375.02 =β , m5x 1 =∆ )( , 

m2x 2 =∆ )(  
 
 

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 0.2 0.4 0.6 0.8 1 1.2

time(s)

po
te

nt
ia

l a
t (

25
,4

70
)

 
 

Figure 3b. Potential φ  versus time; for point 
(25.470) with 6.01 =β , 5.12 =β , m5)x( 1 =∆ , 

m2x 2 =∆ )(  
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Figure 3c. Potential φ  versus time; for point 
(25.470) with .61 =β , .152 =β , m5)x( 1 =∆ , 

m2x 2 =∆ )(  
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Figure 3d. Potential φ  versus time; for point 
(25,470) with 15.021 =β=β ,  m5)x()x( 21 =∆=∆  
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Figure 3e. Potential φ  versus time; for point 
(25.470) with 6.021 =β=β , m5)x()x( 21 =∆=∆  
 

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 0.2 0.4 0.6 0.8 1 1.2

time(s)

po
te

nt
ia

l a
t (

25
,4

70
)

 
 
Figure 3f. Potential φ  versus time; for point 
(25.470) with 2.121 =β=β , m5)x()x( 21 =∆=∆  
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The effect of the element size to the solution has 
also been observed. In Figures (3h), (3i) and (3j) the 
element length is larger than those of Figures (3a), 
(3b) and (3c), while the 1β  and 2β  values are equal. 
Comparison of Figures (3b) and (3i) suggests the 
larger element size represents the wave motion less 
accurately. Therefore, increasing the number of 
elements is suggested. However, it should not be 
forgotten that if the element size is taken to be very 
small, the desired stability may not be obtained. 
Because adoption of a small time step size means 
more time steps used and more accumulation of 
numerical errors. So this speeds up the instability of 
the solution. 
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Figure 3g. Potential φ  versus time; for point 
(25.470) with .1521 =β=β , m5)x()x( 21 =∆=∆  
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Figure 3h. Potential φ  versus time; for point 
(25.470) with 1501 .=β , 37502 .=β , m10)x( 1 =∆ , 

m4)x( 2 =∆  
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Figure 3i. Potential φ  versus time; for point (25.470) 
with 6.01 =β , 5.12 =β , m10)x( 1 =∆ , m4)x( 2 =∆  
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Figure 3j. Potential φ  versus time; for point (25.470) 
with .151 =β , 5.372 =β , m10)x( 1 =∆ , m4x 2 =∆ )(  
 
Consideration of Figure (3b) tells us that even small 
reflections can be seen in the domain. Comparisons 
of Figures (3b-c), (3e-g) and (3i-j) lead us to see a 
solution with unseen reflections for the larger 1β  

and 2β  values. 
 
As can be seen from results (3b), (3f) and (3i), the 
reflections are weaker than the first wave. This is 
because the amplitude of the wave decreases as the 
radius increases since the energy in the wave front is 
spread out over an ever-increasing circumference. 
 
In results (3e) and (3f), 21 xx )()( ∆=∆  and so that 

21 β=β=β .  In the first, β  is 0.6 and in the second 
1.2. In the first case, the solution looks to be more 
sensitive to selection of time step, while the second 
is not as clear as in Figure (3b). So for uniform 
elements β  close to 1 is recommended. In the 
meantime, Figure (3b) suggests taking β  close to 1 
for non-uniform elements, referring to an 
intermediate element. In this respect, use of uniform 
elements can increase the stability of the numerical 
solution. 
 
A similar analysis for boundary points was carried 
out in a different medium by Dominguez and 
Gallego, (1991) for elastodynamic problems, and 
their observations agree with our observations for 
internal points. 

 
 

5. CONCLUSIONS AND 
RECOMMENDATIONS 

 
 

A time domain direct BEM was employed for the 
solution of the problem. 
 
It was observed that the solutions are sensitive for 
the selection of time step and element size. Perhaps 
one of the most important reasons for the sensitivity 
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is to use many equations during the numerical 
solution. Clearly, more equations give rise to more 
operations, which in turn cause a greater 
accumulation of round-off errors. Thus, the number 
of the linear equations affects the stability. 
 
On the other hand, the desire for stable results 
requires more elements which in turn increase the 
dimension of the algebraic equation system. It must 
be emphasized that very few elements may not 
represent small changes as required. It is therefore 
recommended that a reasonable number of elements 
must be employed. This number can be determined 
by researchers depending on the nature of the 
problem to be solved. 
 
Even though the example taken shows that the time 
domain-direct BEM is stable for practical 
applications, future work should concentrate on the 
analysis of numerical solutions, which give 
unconditional stability. 
 
To determine the dynamical response of two-
dimensional geophysical structures, the boundary 
has been composed of a number of ‘linear lines’. 
The size of the source considered should not be too 
small to simulate meaningful changes in the media 
of interest.  
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