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Geometric and Kinematic Analysis of
Deployable Doubly Ruled Hyperboloids
Biçim Değiştirebilen Çift Yönlü Çizel Yüzey Hiperboloidlerin

Geometrik ve Kinematik Analizi

Feray MADEN,1 Koray KORKMAZ2

Bu yazının amacı, mimari uygulamalarda kullanılabilecek biçim değiştirebilen çift yönlü çizel hiperboloid yüzeyler geliştirmektir. İlk olarak, çizel 
yüzey türetme metoduyla üretilen hiperboloidlerin geometrik prensipleri sistematik olarak analiz edilmekte ve farklı tiplerde türetilmesi için 
morfolojisi incelenmektedir. Daha sonra, biçim değiştirebilen hiperboloid yüzeylerin inşası için geliştirilen bir metot tanıtılmaktadır. Çalışma, 
hiperboloidlerin hareket davranışlarının çubuk elemanların kesişim noktalarında yer alan bağlantı tipleriyle doğrudan ilişkili olduğunu göster-
mektedir. Tek serbestlik dereceli hiperboloidlerin yalnızca döner ve küresel mafsal kullanarak inşa edilebildiği kinematik analizle kanıtlanmak-
tadır. Son olarak, önerilen mafsal tiplerine göre farklı sayıda kesişim sayısına sahip hiperboloidler türetilmekte ve bunların hareket kabiliyetleri 
tartışılmaktadır.
Anahtar sözcükler: Biçim değiştirebilen hiperboloidler; çift-çizel yüzeyler; kinetik strüktürler; strüktürel mekanizmalar.

ÖZ

This paper aims to develop deployable doubly ruled hyperboloid surfaces that can be used in architectural applications. First, the study 
systematically analyzes the geometric principles of hyperboloids generated by the ruled surface generation method and examines the 
morphology to generate different types of hyperboloids. Then, a method is introduced to construct deployable doubly ruled hyperboloid 
surfaces. The study demonstrates that deployment behavior of the hyperboloid is directly related to joint types used at the intersection 
points of the bars. Based on kinematic analysis, the study establishes that deployable hyperboloids with a single degree of freedom can 
be constructed only by revolute and spherical joints. Finally, various hyperboloids having different number of intersections are construct-
ed according to the proposed joint types and their deployment capabilities are discussed.
Keywords: Deployable hyperboloids; doubly-ruled surfaces; kinetic structures; structural mechanisms.

ABSTRACT



Introduction
The geometrical simplicity and structural advantages of 

doubly curved anticlastic surfaces opened a wide range of 
applications in architecture and engineering. Pioneered 
by Vladimir Shukhov, Antoni Gaudi and Félix Candela, an-
ticlastic surfaces such as hyperboloid of one sheet and 
hyperbolic paraboloid (hypar) have been used for cooling 
towers, oil and water storage tanks, radio and transmis-
sion masts, offshore structures and other industrial prem-
ises. Over the last century, various different types of struc-
tures in the forms of hyperboloid and hypar have been 
built around the world.

Hyperboloid geometry’s surface generation method 
and its form based structural behavior played a fundamen-
tal role in constructing hyperboloid structures. Since the 
straight-line generators can form the anticlastic surface, 
concrete shell structures have been easily constructed by 
using straight wooden boards, which not only simplified 
the formwork but also provided efficient use of construc-
tion materials. Hence, various elegant structures with dif-
ferent curvatures could be realized to span over large ar-
eas. Likewise, steel and timber grid shells made with lattice 
of straight beams have been developed to obtain not only 

aesthetically pleasing structures but also structurally effi-
cient design solutions. The impressive strength and stiff-
ness of the hyperboloid geometry has enabled to support 
large loads at the top of the hyperboloid tower structures.

The major advantages of the hyperboloid lattice struc-
tures based on their spatial, structural and constructional 
efficiencies attracted the attention of modern architects. 
Even though these structures have been mostly used in 
purpose driven industrial architecture in the nineteenth 
and twentieth centuries, different functions have been 
proposed for them in the last decades by covering the 
structures with glass either inside or outside. Manchester 
Corporation Street Footbridge can be shown as an exam-
ple of this usage (Figure 1a). Designed by Hodder & Part-
ners and built in 1999, this bridge is shaped in the form 
of hyperboloid and appears as a lightweight glazed tube 
between two buildings (Collis, 2003). Developed by Smith 
& Gill Architects in 2008, Al Masdar Headquarters build-
ing in Abu Dhabi is another innovative example formed by 
eleven hyperboloid-like structures that perform different 
functions (Figure 1b). These structures not only support 
the building’s curvilinear canopy roof but also act as wind 
towers creating air movement in the interior courtyard 
spaces (McKeough, 2008). Likewise, the vault structure of 
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Figure 1. (a) Manchester Corporation Street Footbridge (Photo: Peter Cook); (b) Al Masdar Headquarters Building (Source: Smith & 
Gill Architects); (c) Adnan Menderes Airport Domestic Terminal; (d) Three Mountains School (Source: http://kurakurabali.com/island-
of-happiness/harmony-with-creation/).



the Adnan Menderes Airport Domestic Terminal building is 
supported by four hyperboloid lattice towers that provide 
natural daylight and ventilation into the interiors (Figure 
1c). Similarly, the design of the Three Mountains School 
building in Bali is dominated by three hyperboloid lattice 
towers constructed completely from bamboo (Figure 1d). 
On the other hand, several hyperboloid tower structures 
serving for different functions have been built around the 
world such as Barcelona Airport Air Traffic Control Tower, 
Canton TV & Sightseeing Tower in China, Tornado Tower 
in Qatar, Museo Soumaya in Mexico, Kobe Port Tower & 
Maritime Museum in Japan and Kisfaludy Observation 
Tower in Hungary.

The architects of the twenty-first century are challenged 
to create forms and structures that are more dynamic and 
adaptive. Rather than relying on conventional structures, 
they have explored new structural systems that can offer 
more innovative solutions for architectural applications as 
changing the building’s form. Advances in technology influ-
enced building design techniques and enabled movement 
to be incorporated into architecture. To produce an archi-
tecture that is physically responsive to change, different 
types of kinetic structures have been developed such as 
deployable bar structures, folded-plate structures, strut-
cable structures and membrane structures. Compared to 
conventional structures, these structures may offer viable 
solutions for certain types of applications such as exhibi-
tion halls, temporary or emergency shelters, retractable 
roofs for sporting fields and outdoor recreation facilities, 
protective shelters on excavated archeological sites and 
responsive facades. Deployable bar structures are impres-
sive examples of the kinetic structures, which not only 
allow shape transformations like mechanisms in order to 
adapt to different functions or environmental conditions, 
but also transfer loads like structures.

Composed of scissor like elements (SLEs), many de-
ployable bar structures having singly curved or synclastic 
surfaces have been proposed. However, anticlastic hyper-
boloid and hypar surfaces have been scarcely used for ki-
netic structures. Earlier works on those surfaces focused 
on Bennett linkage (Bennett 1903) since it is the only single 
DOF (degree-of-freedom) 4R (revolute) spatial mechanism 
that defines a quadric surface with its straight links. How-
ever, most of them were restricted to geometric character-
istics of the Bennett linkage (Yu 1981; Huang 1997; Baker 
2004, 2007). Some researchers have investigated the con-
struction of deployable structures with the Bennett link-
age. Chen and You (2004, 2005) have developed structural 
mechanisms using alternative form of the Bennett linkage. 
Considering this alternative form, Yu, Luo, and Li (2007) 
have proposed a deployable membrane structure for aero-
space applications. Using equilateral Bennett linkages, 

Melin (2005) has proposed a long-span deployable shelter 
structure housing military helicopters. Moreover, Tian and 
Chen (2010) have designed a foldable shelter that is com-
posed of five Bennett linkages. Furthermore, Yang, Li, and 
Chen (2015) have proposed a deployable saddle surface 
with equilateral Bennett linkages.

Some other researchers have studied possible applica-
tions of deployable hyperboloid and hypar structures in ar-
chitecture. Al Khayar and Lalvani (1998) have explored the 
application of angulated SLEs to polygonal hyperboloids 
in order to generate periodic structures (Figure 2a). They 
have proposed different types of polygonal hyperboloids 
derived from regular and semi-regular tessellations, but 
their work was limited to morphological possibilities. Lang-
becker (2000) has designed a deployable hypar structure 
composed of translational SLEs, which has a complex sys-
tem due to the number of links and joints used to generate 
the desired curvature and deployment. Furthermore, De 
Temmerman et al. (2007) have developed a deployable hy-
perboloid mast with angulated SLEs for a temporary mem-
brane canopy structure (Figure 2b). In order to achieve the 
required structural strength and stiffness, horizontal ties 
have been added to the mast due to the excessive DOF of 
the mechanism. Moreover, Escrig and Sanchéz (2013) have 
proposed a fractal deployable hyperboloid using three 
segments of scissor units, but the connections of the seg-
ments seem problematic due to the eccentricity.

Aforementioned studies have made important contri-
butions to the improvement of deployable hyperboloid 
and hypar structures. Although many impressive concepts 
have been proposed varying in size, geometry and retrac-
tion methods, they could not been realized in architecture 
since they are composed of multiple SLEs that require 
more complex structural and mechanical systems. In those 
systems, numerous bars have to be connected by single 
joints in order to generate the desired geometric shapes. 
This affects the DOF of the whole system and complicate 
the control of the movement during the deployment pro-
cess. As the number of bars and joints increases, the struc-
ture becomes more complex and the weight and cost of 
the structure increase. Moreover, new joint types must 
be developed not only to connect different bars to each 
other in the structure but also to construct new geometric 
shapes. Thus, it is crucial to reduce the number of links 
and joints.

The deficiencies that are inherent in the current designs 
have led the authors to simplify both geometrical and me-
chanical complexity of such structures. Using ruled surface 
generation method, different types of deployable hyper-
boloids have been constructed and their deployment ca-
pacities have been discussed. The proposed solution in 
this paper leads to a significant reduction of the number of 
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links and joints since the hyperboloid structure can be eas-
ily constructed using identical straight bars and joints. By 
means of the proposed joints, any type of deployable hy-
perboloid having either identical or different radii of base 
curves can be built although the structures composed of 
SLEs require to develop new connection details to gener-
ate the geometry.

Geometric Characteristics and Morphology of 
Hyperboloids
Hyperboloid of one sheet can be generated by using 

two different surface generation methods (Pottmann et al. 
2007). In the first method, the surface is created by revolv-
ing a hyperbola about a central axis. In the second meth-
od, a straight line skewed at an angle is revolved about 
a vertical axis. If the surface has two sets of rulings, the 
generated surface is called doubly ruled hyperboloid.

To define the doubly ruled hyperboloid geometrically, 
the following key principles are used. Firstly, two identical 
base curves (directrix 1 and directrix 2) with a radius of r 
spaced at a distance h apart are drawn on two horizontal 
planes as shown in Figure 3a. Secondly, the base curves 
are divided into n equal parts. It should be noted that the 
minimum number of n is equal to 3, because a hyperboloid 

can be defined with at least three skew lines. Given n, the 
segment angle (φ) of the base curves is calculated as

     (1)

Then, the phase angle (αk) of the skew lines on xy-plane 
is defined. αk must be less than 180°, otherwise the gen-
erated surface becomes a cone. Therefore, the choice of 
αk is limited. Possible phase angles can be found by the 
formula

     (2)

where k=1,2,...,[n/2] for n odd, k=1,2...,[n/2]-1 for n 
even and [()] is the floor function.

According to the chosen phase angle, a skew line (l) is 
drawn from the ith node on the bottom base curve up to 
the (i+k)th node on the top base curve. Then, the skew line 
is revolved clockwise around the z-axis with the chosen 
phase angle as depicted in Figure 3b. Thereafter, the same 
skew line that is mirrored about the vertical axis is revolved 
counterclockwise with the same twist angle (β) (Figure 3c).
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Figure 2. (a) Deployable polygonal hyperboloids (Source: Al Khayar and Lalvani, 1998); (b) Deployable tower 
(Source: De Temmerman, 2007).



According to the parameters h, r and n, the xyz-coor-
dinates of the nodes on the bottom and top base curves 
are found. These are named as Xni, Yni, Zni and Xni’, Yni’, Zni’ 
respectively. Because the bottom and top base curves 
are identical, x- and y-coordinates of the aforementioned 
nodes are the same, but z-coordinates are different. Ac-
cording to Figure 4a, xyz-coordinates of the ith node (where 
i = 1, 2, 3,…,n) are as follows:

       (3)

Revolving the skew lines in clockwise and counterclock-
wise directions exposes intersections between those lines 
and the base curves as shown in Figure 4b. The number 
of intersections depends on the parameters n and αk. The 
number of skew lines (ln), intersections on each skew line 
(Jl), intermediate intersections on each skew line (Ji) and 
the total number of intersections on hyperboloid surface 
(Jh) can be found as:

   ln = 2n   (4)

    Jl = 2k +1  (5)

    Ji = Jl  – 2  (6)

    Jh = n . Jl  (7)

where n is the number of nodes on the base curve and 
k is the factor of αk. For instance, in an octagonal hyperbo-
loid with a phase angle of αk = α3 = 135°, the parameter k 
is equal to 3. Therefore, Jl = 2x3+1= 7, Ji = 7-2 = 5 and Jh = 
8x7 = 56.

To calculate the coordinates of the nodes at interme-
diate intersections, an equation for the skew lines needs 
to be defined. Since the coordinates of the nodes on the 
bottom and top base curves are given by Eq. (3), a general 
formula can be written for two intersecting skew lines.

 

(8)

Due to the curvature of the hyperboloid, the distances 
between intersection points (d

i) are not identical and can 
be calculated by the formula

 (9)

In order to study the morphology of the hyperboloid, 
a parametric model is constructed in Grasshopper®. The 
geometrical conditions of the hyperboloid surface are de-
fined with a set of variables in the parametric model. The 
model allows generating different types of hyperboloids by 
changing the input parameters h, r, n and αk. For instance, 
h or r can be adjusted to define the size of the hyperboloid. 
Figure 5 illustrates the process of changing the parameter 
r in which the base curves have same radius.

In addition to the hyperboloids generated with identical 
base curves, it is possible to obtain hyperboloids with dif-
ferent radii of base curves. As shown in Figure 6, the radius 
of the bottom base curve (rb) or the radius of the top base 
curve (rt) can be changed. In Figure 6a, rt is kept constant 
and rb is changed. On the contrary, in Figure 6b, rb is kept 
constant and rt is changed.

Similarly, the curvature can be changed by increasing or 
decreasing the parameter αk. If αk is increased, the number 
of intersections between the skew lines increases as well 
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Figure 3. (a-c) Generation process of doubly ruled hyperboloid.



(Figure 7a-e). However, when αk = 1800, all the lines inter-
sect at a single mid-point and a conical surface is obtained 
as shown in Figure 7f. By means of the aforementioned 

surface generation method, different types of hyperbo-
loids are generated. In Figure 8, some basic types are given 
with their construction parameters.
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Figure 4. (a) Construction parameters of hyperboloid; (b) intersection points of skew lines.

Figure 5. Decagonal hyperboloid generated by changing r.

Figure 6. Decagonal hyperboloid: (a) generated by changing rb; (b) generated by chang-
ing rt.



Construction of Deployable Doubly Ruled
Hyperboloids
Hyperboloid is a quadric surface. Generating the hyper-

boloid by ruled surface generation method also introduces 
sub-quadric surfaces between the intersection points. 
Therefore, at first, the possibility of constructing deploy-

able hyperboloids with the Bennett linkage has been in-
vestigated. Obeying the geometric design principles of the 
linkage and connecting the Bennett loops to each other, 
various structural mechanisms (SMs) have been construct-
ed (Figure 9). It has been realized that the SMs can deploy 
into cylindrical shapes when the end links stand free. How-
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Figure 7. Dodecagonal hyperboloid generated by changing αk: (a) Ji = 1; (b) Ji = 3; (c) Ji = 5; (d) 
Ji = 7; (e) Ji = 9; (f) Ji = 1.

Figure 8. Types of doubly ruled hyperboloids.



ever, they become static structures and do not allow any 
motion when the end links are connected to each other. 
This argument has been proved by calculating the mobility 
of the SMs according to the formula proposed by Alizade 
(2010), which is used for multi-loop mechanisms.

   
(10)

where j is the number of joints, fi is the relative joint 
motion, L is the number of independent loops, λk is the 
number of independent loop closure equations, q is the 
number of excessive elements (links or joints) and jp is the 
number of passive joints.

The Bennett linkage operates in λ = 3; therefore λ is tak-
en as 3 for each Bennett loop when calculating the mobil-
ity of the SMs. For the SMs composed of four and five Ben-
nett loops as indicated in Figures 9a and 9d, M = 13-(3x4) = 
1 and M = 16-(3x5) = 1 respectively. If one of the end links 
is eliminated and then the other end link is connected to 
the system as depicted in Figures 9b and 9e, the mobility 
of the systems becomes M = 12-(3x4) = 0 and M = 15-(3x5) 
= 0, respectively. If the eliminated link is added again to 
the system as shown in Figures 9c and 9f, one finds that M 
= 15-(3x6) = -3 and M = 18-(3x7) = -3. Similar approach has 

been applied to the SMs that consist of n number of Ben-
nett loops. Mobility has been again found as -3 for those 
SMs. In addition to the mobility calculations, motion anal-
yses of those SMs have been performed in SolidWorks® 
and CATIA® to check mobility. The results show that the 
SMs become a preloaded structure when all the loops are 
joined together in order to form a hyperboloid with Ji = 1. 
Thus, it can be said that it is not possible to construct a 
deployable hyperboloid with the Bennett linkage. Because 
the system requires the use of different types of joints at 
the nodes, it is necessary to develop a new design solu-
tion.

Before introducing the solution, whether or not the dis-
tances between the intersection points change during the 
deployment process needs to be investigated. For this pur-
pose, many models have been constructed and analyzed. 
Using Eqs. (3), (8) and (9), those distances have been cal-
culated at different configurations of the hyperboloids. It 
has been found that distances do not change during the 
deployment process. In order to prove this argument, one 
of the constructed models was selected. An octagonal hy-
perboloid with Ji = 3 is analyzed at three different configu-
rations (Figure 10). With respect to the given parameter l = 
5.745m, the parameters r and h in configurations 1, 2 and 
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Figure 9. SMs composed of Bennett linkages.



3 are respectively as follows: r1 = 2m, h1 = 5m, r2 = 3m, h2 
= 3.87m, r3 = 4m and h3 = 1m. The xyz-coordinates of the 
top, intermediate and bottom nodes on bar1, bar2, bar3 
and bar4 in each configuration have been calculated ac-
cording to Eqs. (3) and (8). The values are given in Table 1. 
According to Eq. (9), the distances between the selected 
nodes (n6-J1, J1-J2, J2-J3 and J3-n8’) have been calculated. It 
has been found that dn6J1 = 1.68, dJ1J2 = 1.18, dJ2J3 = 1.18 and 
dJ3n8’ = 1.68 for configurations 1, 2 and 3. The result shows 
that those distances do not change during the deployment 
process. Therefore, it can be claimed that deployable hy-
perboloids can be easily constructed by the joints that 
have only rotational motion.

Considering that the lengths of the bars between the in-
tersection points remain constant during the deployment 
process, a SM composed of only R and spherical (S) joints 
has been developed. The axes of bars intersect; therefore, 
the center of rotation is the same for two intersecting bars. 
R joints have been used at mid-intersections and S joints 
have been used at top, bottom, and intermediate intersec-
tions of the concurrent bars as illustrated in Figure 11a. 
The R joints restrict the movements of the bars. Their axes 
lie in the same plane and intersect at a single point (Figure 
11b). Because the S joint has 3-DOF due to three rotational 

movements about the intersecting rotation axes, it allows 
the hyperboloid to deploy from one configuration to an-
other.

Thereafter, the mobility of the hyperboloids has been 
investigated. For this purpose, at first, the loops on the hy-
perboloid surface have been analyzed. As shown in Figure 
11c, the hyperboloid has top, bottom and surface loops. 
The number of loops depends on the type of hyperboloid. 
Because the bottom loop has been considered as a depen-
dent loop, only the top and surface loops have been taken 
into account in the mobility formula. However, the top 
and surface loops have different λ. While the top loop be-
longs to λt = 6 system which describes three rotational and 
three translational active motion, the surface loops belong 
to either λs = 5 system allowing three rotational and two 
translational active motion or λs = 4 system allowing three 
rotational and one translational active motion in subspace. 
If the bars have only one intersection at the middle (Ji = 
1), λ for the surface loops is λs = 5. But, if Ji > 1, it is equal 
to λs = 4. In that condition, the system has some excessive 
joints. To calculate the excessive joints of the hyperboloid 
(q), a new formula has been introduced.

    (11)
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Figure 10. Three different deployed configurations of octagonal hyperboloid.



where n is the number of nodes on the base curve, Ji 
is the number of intermediate intersections on the link, 
λs is the DOF of the independent surface loops and λt is 
the DOF of the independent top loop. For instance, for the 
hyperboloids in which each bar has 5 intersections, Ji = 5-2 
= 3 according to Eq. (6). Due to Ji > 1, λs = 4 for the surface 
loops and λt = 6 for the top loop. The number of excessive 
joint is written as q = n.(3-4)+6+1 = 7-n.

After determining the parameter q, different types of 
hyperboloids have been constructed and analyzed in terms 
of their mobility. The system parameters of the hyperbo-
loids are given in Table 2. It has been found that the trian-
gular hyperboloid deploys with single DOF while the other 
hyperboloids with Ji = 1 deploy with multi DOF (M-DOF). 
This argument was proved by Eq. (10). According to Table 
2, the mobility of the triangular hyperboloid has been cal-
culated as M = 21-[(5x3)+(5x1)]+0-0 = 1. The system can 
deploy from a closed configuration to an expanded one 
as shown in Figure 12a. In tetragonal hyperboloid, it has 
been found that M = 28-[(5x4)+(6x1)]+0-0 = 2. Because 
the tetragonal hyperboloid has 2-DOF, it can deploy both 
x- and y-directions independently. Similarly, in pentagonal 
hyperboloid, the mobility of the system is equal to M = 
35-[(5x5)+(6x1)]+0-0 = 4. Likewise, the mobility of the hex-
agonal hyperboloid is M = 42-[(5x6)+(6x1)]+0-0 = 6.

Based on aforementioned calculations, it can be claimed 
that the mobility of the one-mid-intersection hyperboloids 
increases as the number of nodes on the base curve in-
creases. However, it has been realized that the mobility of 
the M-DOF hyperboloids that have more than one inter-
mediate intersection decrease to 1 again due to the fact 
that L increases as Ji increases. To analyze the mobility of 
the hyperboloids with Ji > 1, different types of hyperbo-
loids have been constructed and mobility calculated ac-
cording to Eq. (10).

In pentagonal hyperboloid with Ji = 3, the mobility has 
been calculated as M = 65-[(4x15)+(6x1)]+2-0 = 1. In hex-
agonal hyperboloid with Ji = 3, the mobility of the system 
equals to M = 78-[(4x18)+(6x1)]+1-0 = 1. In Figure 12b, the 
deployment process of the single DOF hexagonal hyper-
boloid is shown. Similarly, in heptagonal hyperboloid with 
Ji = 3, it has been found that M = 91-[(4x21)+(6x1)]+0-0 
= 1. In heptagonal hyperboloid with Ji = 5, M = 
133-[(4x35)+(6x1)]+14-0 = 1. By using the same method 
of calculation, the mobility of different types of doubly 
ruled hyperboloids can be found. Consequently, it can be 
claimed that the only single DOF hyperboloid among the 
examples of hyperboloids with Ji = 1 is the triangular hy-
perboloid. The others belong to M-DOF system. However, 
all the hyperboloids with Ji > 1 belong to single DOF system 
in which they can deploy from a compact configuration to 
an extended one.

Conclusion and Discussion
Since the hyperboloid structures can be easily construct-

ed from straight fragments and resist to extreme forces 
owing to their curved form, they have been employed in 
many buildings having different functions. When the ki-
netic structures came into vogue in the last decades, it has 
attracted the interest of both architects and engineers due 
to their ability to change their geometric from one con-
figuration to another one and their potentials for compact 
storage and transportability. Various alternative solutions 
have been proposed for their architectural applications. 
However, rather than constructing the hyperboloid geom-
etry by straight fragments, SLEs have been used which in-
creased the complexity, weight and cost of the structures. 
In those solutions, numerous bars have interconnected by 
single joints and different types of connection details de-
veloped to solve the geometric incompatibilities between 
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Figure 11. (a) Joint types at intersection points; (b) axes of R joints; (c) loops on hyperboloid surface.



the members that occur during the deployment process. 
Due to the mechanical complexity of their systems and 
lack of structural resistance against design loads, the pro-
posed structures could not been realized in architecture.

In this paper, a method has been presented in order to 
build deployable hyperboloids. Starting from the analysis 
of the geometric principles of doubly-ruled hyperboloids, 
the morphology has been discussed in detail. It has been 
demonstrated the relation between the curvature of the 
surface and the rotation angle of the skew lines. By means 
of the parametric model built in Grasshopper®, many 
doubly-ruled hyperboloids having different curvatures 
have been generated. Considering the geometric require-
ments of the hyperboloid surface, it has been attempted 
to built the deployable hyperboloids by using the current 
mechanisms in literature. For this purpose, hyperboloids 
have been constructed with respect to the geometric de-
sign principles and special conditions of Bennett linkage 
since it defines a quadric surface with its straight links. 
However, it has been proved according to the kinematic 
studies that the constructed hyperboloids with the Ben-
nett linkages are not deployable. Thus, a new SM has been 
proposed to obtain deployable doubly ruled hyperboloids. 

It has been demonstrated that the deployment behavior 
of SM is directly related to joint types that are used at the 
intersection points of the bars. According to the proposed 
joint types, kinematic studies of the hyperboloids have 
been carried out. Based on kinematic studies, the mobil-
ity and deployment capabilities of the constructed models 
have been discussed. It has been found that the triangular 
hyperboloid and the hyperboloids with Ji > 1 have single 
DOF while the other hyperboloids with Ji = 1 have M-DOF. 
Finally, it has been proved that deployable hyperboloids 
with single DOF, whose number of intermediate intersec-
tion is more than one, can be constructed with only R and 
S joints. By this means, it has been achieved to obtain hy-
perboloids by identical straight bars and joints. The pro-
posed hyperboloids offer an advantage over existing solu-
tions of the deployable bar structures composed of SLEs, 
because it reduces the number of elements and the joints 
to be used in the system to create the structure. Thereof, 
the complexity, weight and the cost of the structure can 
be reduced.

The proposed deployable hyperboloids can be used in var-
ious applications where form flexibility is required to adapt 
to changing circumstances. For instance, they can be used 
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Figure 12. (a) Deployment process of single DOF hyperboloids: (a) triangular hyperboloid; (b) hexagonal hyperbo-
loid with Ji = 3.



as a self-standing observation tower structure on which sev-
eral platforms are attached. The height of the structure can 
be changed according to the view. Moreover, they can serve 
as deployable masts for a temporary canopy structure. As 
the hyperboloids deploy, the geometric shape of the canopy 
can be changed according to the user demands. Apart from 
using hyperboloid as a self-standing structure, a number 
of hyperboloid sections can be joined together to create 
new geometric forms that serve as a shelter structure. As 
the deployable hyperboloids provide desired flexibility and 
strength, other alternative solutions can be proposed for 
both permanent and temporary structures.
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