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ABSTRACT
Kidneys are the most important and the functional organs in the body. 
There are numerous of disorders affecting the kidneys. The most im-
portant disorder is chronic kidney disease because of being costly 
and going to failure. In recent years ultrasound elastography technics 
showed increasing development line, and more studies were per-
formed about elastography on kidneys. The weighted amount of the 
elastography studies are about chronic kidney disease, kidney failure 
and allograft patients, while some of them are about kidney masses 
or diabetic nephropathy. Various studies presented various results. In 
this review we want to present the elastography studies about kidney.
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ÖZET
Böbrekler çok önemli ve fonksiyonel organlardır. Böbreği etkileyen 
çok sayıda hastalık vardır. Kronik böbrek hastalığı yüksek maliyeti 
ve yetmezliğe ilerlemesi nedeniyle en önemli hastalıktır. Son yıllarda 
sonoelastografi tekniği yükselen bir grafik çizmektedir ve böbrekler 
üzerinde sonoelastografi tekniği kullanılarak yapılmış değişik çalış-
malar mevcuttur. Bu çalışmaların çoğunluğu kronik böbrek hastalığı, 
böbrek yetmezliği ve allograft hastalarını konu alırken, bazıları böbrek 
kitleleri ve diabetik nefropati hakkındadır. Farklı çalışmalarda farklı 
sonuçlar sunulmuştur. Bu derlemede böbrekler hakkında yapılan so-
noelastografi çalışmalarını sunmayı planladık. 

Anahtar kelimeler: böbrek; elastografi; kronik böbrek hastalığı

Abbreviations (Listed in Alphabetical Order)
Acoustic Radiation Force Impulse Elastography (ARFI)
Angiomyolipoma (AML)
Chronic Allograft Injury (CAI)
Chronic Allograft Nephropathy (CAN)
Chronic Kidney Disease (CKD)
Dimercaptosuccinic acid (DMSA)
estimated Glomerular Filtration Rate (eGFR)
Glomerular Filtration Rate (GFR)
Intravenous Pyelography (IVP)
kiloPascal (kPa)
Magnetic Resonance Imaging (MRI)
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Pulsatility Index (PI)
Renal Cell Carcinoma (RCC)
Resistive Index (RI)
Real-time sonoelastography (RSE)
Region of Interet (ROI)
Real-time elastography (RTE)
Renal Transplant Recipients (RTRs)
Strain Elastography (SE)
Strain Index (SI)
Strain Ratio (SR)
Supersonic Shear Imaging (SSI)
Shear-wave Elastography (SWE)
Shear Wave Speed (SWS)
Shear Wave Velosity (SWV)
Transient Elastography (TE)
Tissue Mean Elasticity (TME)
Ultrasonography (USG, US)
Vesico Ureteral Reflux (VUR)
Zero-Crossing (ZC)

Kidneys 
Kidneys are vital and important organs, anatomically 
and functionally depicted as parenchyma and sinus. 
Parenchyma consists of cortex and medulla, and sinus 
consists of fat, tubulary collecting system, pelvis, blood 
vessels and nerves1. There are numerous of disorders af-
fecting the kidneys. Some of them are functional, syste-
mic and diffuse, while some are local and massy, and also 
vascular, congenital, hereditary and acquired2,3. Among 
all the disorders, chronic kidney disease (CKD) and 
transplanted kidneys are the subject of elastography 
in a majority of studies4–14. CKD is an important and 
costly health problem because of not only the increa-
sing incidence and prevalence but also resulting in end-
stage renal failure. The progression of CKD shows fib-
rosis involving first glomeruli or interstitial space15–19. 
Fibrosis can be detected only by the biopsy procedure, 
which is interventional and non confortable for the pa-
tients. To detect the fibrosis, non-invasive and quickly 
obtained methods are essential for nephrologists not 
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to waste time and to plan the treatment. The fibrosis 
changes the microstructure and elasticity of the tissue20. 
Elastography presents the elasticity of the tissue but has 
not been placed in the routine diagnostic algorithm of 
the kidney disorders. In this review, we aim to discuss 
the USG elastography method in kidney disorders with 
the literature background. 

Elastography
Elastography was first described by Ophir et al.21. The 
working principle of elastography is based on the lesi-
on or tissue stiffness. Standard USG device and elas-
tography software are enough to establish the elas-
tography. Basicly two types of elastography can be 
counted as quasci static and dynamic differentiating 
each other from data collecting way and the software. 
Strain elastography (SE) is quasci static method. Shear-
wave Elastography (SWE), Acoustic Radiation Force 
Impulse Elastography (ARFI) and Transient elastog-
raphy (TE) are the dynamic types22,23.

Dynamic Methods
(Acoustic Radiation Force Impulse Elastography, 
Shear-Wave Elastography, and Transient Elastography)
Shear-wave elastography uses shear-waves to collect the 
data. The propagation speed of the shear wave is mea-
sured in this method. The software processes the shear-
wave propagation in very very short time and quickly 
(20.000 frame in second) and presents the quantitable 
values. The unit of shear wave is m/sec and the tissue 
elasticity is kiloPascal (kPa) (Fig. 1 and Fig. 2). The 
elasticity formula is E=ρc2. The ‘E’ indicates the tissue 
elasticity, ‘ρ’ (kg/cm3) indicates the tissue density, whi-
le ‘c’ (m/sec) indicates the shear-wave speed. But SWE 
has some limitations, such as lack of measurement in 
ascites medium. The operator independency is the su-
periority of SWE22,24. The major handicap of SWE is 
the anisotropy, which is related with the tissue structu-
re and the beam distribution. The renal cortical struc-
ture shows radial distribution from hilus to cortex. 
The USG beams come in different angles to the poles 
and equator of the kidney. If the beams come parallel 
to these structures, shear waves propagate perpendi-
cularly, while beams come perpendicular shear waves 
propagate parallelly. This anisotropy causes disconcor-
dance in the values of poles and equator23,25.

ARFI is another method that uses shear-waves as SWE 
does. But the data acquisition of ARFI is different 
from the SWE. In ARFI the high energized short term 

(0.03–0.04 msec) acoustic pulses, make the micrometric 
(1–20 μm) displacements in the examined tissue. Square 
shaped Region of Interet (ROI) is used to measure the 
micrometric displacements. The displacement generates 
the shear-waves. ARFI uses the displacement of the exa-
mined tissue using shear waves, but does not use the spe-
ed of shear-wave unlike SWE. The soft tissues are bright, 
while the hard tissues are dark in ARFI in gray scale scre-
en. The unit of ARFI is m/sec. Operator independency 
and the quantitative data presentation are the advanta-
ges of ARFI, but does not have capability to present data 
in ascites mediums like in SWE22,26–28. 

TE is one of the methods that use shear-waves. The 
main usage area and the studies about TE is based on 
the liver. In this method, the USG probe applies ex-
ternal mechanical impulse to the related tissue, thus 
shear-wave generates in the related tissue. The speed 
and the displacement of the shear wave according to 
the deepness generate an image like in M-mode. So 
the major handicap of TE is lack of gray scale B-mode 
USG images. TE can only serve the M-mode USG 
images. The speed of the shear wave increases with the 
stiffness of the tissue. TE can not be used in the exis-
tence of perihepatic fluid. The evaluated area is 200 
times bigger (3 cm3) than the biopsy. The unit of TE 
is kPa. In TE, the inter and the intra-observer varia-
bility is minimal. But there are also some limitations, 
such as obesity, does not have capability to present 
data in ascites mediums and in focal lesion. The main 
limitation about liver is the non capability of measu-
rement in left lobe22,23,28–32. 

Quasi Static Method (SE)

Strain Elastography is different from shear-wave elastog-
raphy methods in some ways. In SE the acoustic force is 
applied by the operator manually. The operator does not 
only produce the acoustic force, but also produces the 
dynamic force to the examined tissue, thus this method 
is semi-static. The operator or transducer applies comp-
ression and decompression pulses to the related lesion. 
The measurements should be collected in the decomp-
ression phase, to avoid the pressure effect. SE measures 
the displacement and the deformation of the lesion. The 
unit of SE is Strain Index (SI). SI, means the stiffness 
ratio of the adjacent tissue compared to the examined 
lesion. The stiffness of the hard lesions is higher, thus 
the displacement and deformation is lower. So, the stra-
in of hard lesions is lower, but the SI of hard lesions is 
higher, because of the ratio. In this method, two ROIs 
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are required to measure and compare the stiffness (Fig. 
3 and Fig. 4). The major limitation of the SE is opera-
tor dependency. The window width and the transducer 
pressure affects the image quality. The window should 
be arranged as optimal as the lesion size. The compressi-
on and the decompressions should be done slightly and 
not very slow or not very fast (0.5–2 compressions in a 

second). The distance between the lesion and the trans-
ducer should be less than 3–4 cm to acquire more reliab-
le data. This method has an advantage about providing 
data in ascites medium, unlike others20,22,23,33,34. 

The major limitation of all elastography methods are 
small sample size. For example strain ratio needs to rate 

Figure 1. Shear wave elastography im-
age of kidney parenchyma. The square 
indicates the measurement localiza-
tion. The number below the figure 
indicates stiffness of the tissue in the 
unit of kPa.

Figure 2. Shear wave elastography 
image of kidney sinus. The square in-
dicates the measurement localization. 
The number below the figure indicates 
stiffness of the tissue in the unit of kPa.
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Literature Review

In the advanced search mode of Pubmed using the 
words ‘kidney elastography’, picking the MeSH terms 
and Title/Abstract, 49 results were listed. Some of them 
were about animals36–42, some of them were about MRI 
or MR elastography43–52, some of them were about other 
organ systems53–65, some of them were about elastog-
raphy technic28,66–69 and some of them were about non 
elastography related kidney studies70. We excluded these 
articles. The rest amount of related articles were 134,5,8–

11,13,14,25,71–74. But, pubmed search missed some artic-
les6,7,12,35,75, that was mentioned in this paper (Table 1). 

the two adjacent tissue. The operator can only adjust the 
ROI size according to the parenchyma/sinus and the 
perisplenic soft tissue. To avoid the tissue wrong samp-
ling, operator should use maximum sampling ROIs. 
Maximum ROI should present the the more reliable va-
lue. But using maximum ROI will take a lot of time. In 
addition to ROI size, the organs have three dimensions 
but the US systems allows the operator to measure in 
two dimension. If operator can measure whole the kid-
ney this measurement will present only two dimentional 
one slice value35. This means that, operator should take 
more measurements from different aspects of the kid-
ney. This procedure also takes more time. 

Figure 3. Strain elastography image 
of the kidney parenchyma. The image 
shows active elastography mode of 
ultrasonography (USG). The screen 
was divided into three parts as right, 
left and bottom. The color coded left 
side indicates elastography mode, 
while the right side is gray scale 
B-mode USG image. The bottom in-
dicates the sinusoidal wave, which 
allows the operator to follow the 
compression and decompressions. 
The circles indicates the region of in-
terests (ROI). One ROI was adjusted to 
the parenchyma while the other was 
in the perirenal fat tissue. The strain 
ratio was given below the screen.

Figure 4. Strain elastography im-
age of the kidney parenchyma. The 
right side of the image indicates the 
elastography mode. Two ROIs seen 
in the left side image. One of them 
was udjusted to the liver parenchyma 
while the other was on the kidney 
parenchyma. The numbers below the 
screen indicates the strain ratio of the 
parenchyma and the adjacent tissue. 
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Table 1. The articles that we discussed

Reference Elastography 
type

Patient population Study design Conclusion

Ardnt 2010 et al.
Noninvasive evaluation of renal 
allograft fibrosis by transient 
elastography--a pilot study

TE (Fibroscan) Renal transplanted 
55 patients, 
Biopsies were 
performed in 20 
patients.

Evaluates the feasibility of TE for the assessment of renal 
allograft fibrosis. Stiffness was significantly correlated to 
the extent of interstitial fibrosis (Pearson r: 0.67, P: 0.002, 
R(2): 0.45) and inversely related to eGFR (Pearson r: -0.47, 
P: 0.0003, R(2): 0.22). The stiffness values of chronic 
allograft injury Banff grades 0-1 differed significantly from 
grade 2 (P: 0.008) and grade 3 (P: 0.046).

Parenchymal stiffness 
measured by TE reflects 
interstitial fibrosis in kidney 
allografts. 

Asano et al.
Acoustic radiation force impulse 
elastography of the kidneys: is 
shear wave velocity affected by 
tissue fibrosis or renal blood flow?

ARFI (Siemens 
Acoson S2000)

319 CKD, 14 
healthy volunteers

Identify the main influencing factor of the SWV. The SWV 
decreased concurrently with a decline in the eGFR. A low 
SWV was obtained in patients with a high brachial-ankle 
pulse wave velocity. Despite progression of renal fibrosis in 
the advanced stages of CKD, these results were in contrast 
to findings for chronic liver disease, in which progression 
of hepatic fibrosis results in an increase in the SWV. 
Considering that a high brachial-ankle pulse wave velocity 
represents the progression of arteriosclerosis in the large 
vessels, the reduction of elasticity succeeding diminution of 
blood flow was suspected to be the main influencing factor 
of the SWV in the kidneys.

Diminution of blood flow 
may affect SWV values 
in the kidneys more than 
the progression of tissue 
fibrosis.

Dillman et al.
Can Shear-Wave Elastography 
be Used to Discriminate 
Obstructive Hydronephrosis from 
Nonobstructive Hydronephrosis in 
Children?

SWE (Siemens) 37 children  Children underwent elastography of the kidneys 
immediately before and immediately after diuretic renal 
scintigraphy (reference standard for presence of urinary 
tract obstruction).
Median SWS measurements, as well as change in 
median SWS (median SWS after diuretic administration 
minus median SWS before diuretic administration) were 
correlated with the amount of time required for kidney 
radiotracer activity to fall by 50% after intravenous
administration of the diuretic (T1/2). Median SWS 
measurements were compared with degree of obstruction 
and degree of hydronephrosis with analysis of variance.

US SWS measurements did 
not enable discrimination of
obstructive hydronephrosis 
from unobstructive 
hydronephrosis in children.

Gao 2013 et al.
Renal transplant elasticity 
ultrasound imaging: correlation 
between normalized strain and 
renal cortical fibrosis

SE 
(EchoInsight, 
Epsilon 
Imaging)

20 renal transplant The hardness of the renal cortex in renal transplant 
allograft patients using a normalized ultrasound strain 
procedure measuring quasi-static deformation. Normalized 
strain is defined as the mean developed strain in the renal 
cortex divided by the overall mean strain measured in the 
soft tissues from the abdominal wall to pelvic muscles. 
Banff scoring. 

Renal cortex strain is 
strongly correlated with 
grade of renal cortical 
fibrosis. Normalized strain 
is superior to developed 
strain in distinguishing 
moderate from mild renal 
cortical fibrosis. 

Gao 2013 et al.
Corticomedullary strain ratio: a 
quantitative marker for assessment 
of renal allograft cortical fibrosis

SE (Siemens 
Acuson 
Sequoisa 512)

Renal allograft 33 
patients

Correlation between the corticomedullary SR and 
cortical fibrosis in renal transplants. on Banff scoring. We 
calculated the corticomedullary SR (cortical normalized 
strain/medullary normalized strain; normalized strain = 
developed strain/applied strain [deformation from the 
abdominal wall to the pelvic muscles]).

Strain values vary in 
different compartments 
of the kidney. The 
corticomedullary SR on 
USG elasticity imaging 
decreases with increasing 
renal cortical fibrosis, 
which makes it potentially 
useful as a noninvasive 
quantitative marker for 
monitoring the progression 
of fibrosis in renal 
transplants.

Gao 2014 et al.
Ultrasound strain zero-crossing 
elasticity measurement in 
assessment of renal allograft 
cortical hardness: a preliminary 
observation

SE (quasi-
static 
ultrasound 
elastography

38 renal transplant 
patients

USG strain ZC elasticity measurement can be used to 
discriminate moderate cortical fibrosis or inflammation in 
renal allografts, we assessed cortical hardness with quasi-
static USG elastography in renal transplant patients who 
underwent kidney biopsy. Banff scoring. 

ZC is a new strain 
marker that could be 
straightforward to interpret 
and perform, making it 
a potentially practical 
approach for monitoring 
progression of cortical 
fibrosis or inflammation in 
renal allografts.

Goya 2015 et al.
The role of quantitative 
measurement by acoustic 
radiation force impulse imaging in 
differentiating benign renal lesions 
from malignant renal tumours

ARFI (Siemens 
Acoson S2000)

60 patients with 
renal lesions; 
benign, malign and 
infectious

Evaluate the diagnostic performance of ARFI for 
differentiating benign lesions from malignant renal 
tumours. The final diagnoses were determined via 
pathologic (n = 33), clinical (n = 13) and imaging findings 
(n = 14). The SWV values of the renal tumours were 
analysed according to the final diagnoses.

ARFI imaging may be useful 
for differentiating between 
benign renal lesions and 
malignant renal tumours.
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Table 1 (continued). The articles that we discussed

Reference Elastography 
type

Patient population Study design Conclusion

Goya 2015 et al.
Acoustic radiation force impulse 
(ARFI) elastography for detection of 
renal damage in children

ARFI (Siemens 
Acoson S2000)

88 children, 20 
healthy controls

To investigate the contribution of ARFI quantitative USG 
elastography for the detection of renal damage in kidneys 
with and without VUR. Patients were assessed according to 
severity of renal damage on DMSA scintigraphy. 

Decreasing SWV of renal 
units with increasing 
grades of VUR. 

Goya 2015 et al.
Acoustic radiation force impulse 
imaging for evaluation of renal 
parenchyma elasticity in diabetic 
nephropathy

ARFI (Siemens 
Acoson S2000)

114 diabetic 
nephropathy, 281 
healthy

Evaluate the changes in the elasticity of the renal 
parenchyma in diabetic nephropathy using ARFI acoustic 
radiation force impulse imaging. The changes in the renal 
elasticity were compared between the different stages of 
diabetic nephropathy and the healthy control group.

ARFI imaging could be used 
for the evaluation of the 
renal elasticity changes 
that are due to secondary 
structural and functional 
changes in diabetic 
nephropathy.

Grenier 2011 et al.
[Imaging and renal failure: from 
inflammation to fibrosis]

Article in French

Grenier 2013 et al.
Renal ultrasound elastography

Review

Grenier et al., 2012
Quantitative elastography of renal 
transplants using supersonic shear 
imaging: a pilot study

SWE 43 kidney 
transplant recipient, 
followed by biopsy

The reliability of quantitative ultrasonic measurement of 
renal allograft elasticity using SSI. Banff score. 

Quantitative measurement 
of renal cortical stiffness 
using SSI is a promising 
non-invasive tool to 
evaluate global histological 
deterioration.

He WY 2014
Tissue elasticity quantification by 
acoustic radiation force impulse for 
the assessment of renal allograft 
function

ARFI 52 stable renal 
function, 50 biopsy-
proven allograft 
dysfunction

Renal allograft stiffness using ARFI quantification in 
patients with stable renal function and those with biopsy-
proven allograft dysfunction. ARFI quantification, given 
as SWV. The RI was calculated by pulsed-wave Doppler 
ultrasound, and clinical and laboratory data were collected.

Tissue elasticity 
quantification by ARFI is 
more accurate than the RI 
in diagnosing renal allograft 
function.

Lukenda V 2014
Transient elastography: a new 
noninvasive diagnostic tool for 
assessment of chronic allograft 
nephropathy

TE (Fibroscan 
Echosense)

52 Renal transplant 
recipies

CAN is the most common cause of kidney allograft failure. 
Protocol biopsies remain the “gold standard” in CAN 
recognition. Usefulness of TE for the assessment of kidney 
allograft fibrosis in RTRs.

Parenchymal stiffness 
obtained by TE reflects 
interstitial fibrosis. 
Therefore, TE provides the 
opportunity for noninvasive 
screening of CAN.

Menzilcioğlu 2015 et al.
Strain wave elastography for 
evaluation of renal parenchyma in 
chronic kidney disease

SE (Toshiba 
Aplio 500)

58 patients with 
CKD, 40 healhty 
individuals

Determine the difference of SI value of renal parenchyma 
between patients with CKD and healthy individuals.

SI value can be used to 
differentiate patients 
with CKD and healthy 
individuals. We have not 
shown that it can reliably 
differentiate different 
stages.

Orrlachio 2014 et al.
Kidney transplant: usefulness of 
real-time elastography (RTE) in the 
diagnosis of graft interstitial fibrosis

SE (real-time 
elastography-
RTE)

50 patients with 
graft fibrosis

Evaluate the usefulness of RTE in the diagnosis of graft 
interstitial fibrosis. TME was calculated by two blinded 
operators. All patients underwent biopsy after RTE. Banff 
score.

RTE was able to evaluate 
kidney fibrosis and could 
be used as complementary 
imaging during follow-up of 
renal transplant patients.

Özkan 2013 et al.
Interobserver variability of 
ultrasound elastography in 
transplant kidneys: correlations with 
clinical-Doppler parameters

SE (real-time 
elastography-
RTE)

42 adult renal 
transplant 
recipients

Evaluate the ability of investigators to use 
sonoelastography to detect differences in renal cortical 
stiffness and assess the relationship between stiffness and 
clinical-Doppler parameters.

SR showed significant 
positive correlation 
with RI and PI but 
sonoelastography has also 
wide range intra- and low 
interobserver agreement in 
renal transplants.

Tan 2013 et al.
Real-time elastography for 
distinguishing angiomyolipoma 
from renal cell carcinoma: 
preliminary observations

SE (real-time 
elastography-
RTE) (GE Logiq 
E9)

47 lesion detected 
patients
19 RCC, 28 AML

Diagnostic performance of sonoelastography for 
differentiating AML from RCC. The elasticity patterns and 
the strain ratio were evaluated independently by two 
observers. Blue areas in < 50% of lesion, considered type 
1 or type 2) by both radiologists, whereas 18 of 19 renal 
cell carcinomas were classified as having a low-strain 
elastographic pattern (blue areas in >/= 50% of lesion, 
considered type 3 or 4) by both radiologists.

Real-time elastography 
may be useful in 
differentiating AML from 
RCC, by use of both 
elasticity patterns and 
strain ratios.

TE, transient elastography; eGFR, estimated glomerular filtration rate; ARFI, acoustic radiation force impulse elastography; CKD, chronic kidney disease; SWV, shear-wave velosity; SWE, shear-wave elastography; 
SWS, shear-wave speed; US, ultrasonography; SR, strain ratio; USG, ultrasonography; ZC, zero-crossing; VUR, Vesico ureteral reflux; DMSA, dimercaptosuccinic acid; SSI, supersonic shear imaging;  
RI, resistive ındex; CAN, chronic allograft nephropathy; RTRs, renal transplant recipients; RTE, real-time sonoelastography; TME, tissue mean elasticity; AML, angiomyolipoma; RCC, renal cell carcinoma.
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conclusion they finished suggesting real-time elastog-
raphy to differentiate RCC and AML74. 

Conclusion
Sonographic elastography is a new developing technic, 
and various studies have been made using elastography 
in kidneys. Most of the studies are made on the trans-
planted or CKD kidneys to evaluate the effectiveness 
of elastography in the evaluation of corticomedul-
lary fibrosis to preserve the patient from the invasive 
method, biopsy. And also most of the studies were per-
formed using SWE elastography. The results showed 
that, SWV values increase with the degree of fibrosis 
and perhaps in near future especially SWE would take 
the place of biopsy. 
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