THE COMPARE OF OXYGEN UPTAKE KINETICS OF YOUNG SOCCER PLAYERS ACCORDING TO PLAY POSITIONS

¹Hamit CİHAN, ²Erdal ARI, ³İbrahim CAN, ⁴Bahadır DEMİR

¹Karadeniz Technical University Physical Education and Sports School, Turkey.
 ²Ordu University Physical Education and Sports School, Turkey.
 ³Gümüşhane University Physical Education and Sports School, Turkey.
 ⁴Physical Education Teacher, Ministry of the National Education, Turkey.

Abstract

The purpose of this study was to compare oxygen uptake kinetics, ventilatory threshold of young soccer players according to playing position and to determine relationship between oxygen uptake kinetics and ventilatory threshold of young soccer players. Twenty-three young soccer players joined to study voluntarily (n=23; age: 19.8±0.4 years, body height: 179.4±7.2 cm., body mass: 74.2±7.4 kg., VO₂max: 59.7±8 ml/kg/min.). The players were categorized according to playing positions. The VO₂max, ventilatory threshold were determined by incremental treadmill test. Then, treadmill test at running velocity determined VO₂max was performed and oxygen uptake kinetics were identified by mono-exponential model. The time to achieve 95% of VO₂max, spending time at VO₂max were accepted as oxygen uptake kinetics. The correlation among time to achieve 95% of VO₂max, spending time at VO₂max and ventilatory threshold values of young soccer were determined by correlation anlyze and differences according to playing positions were identified by one-way analysis of variance. It was determined significant negative correlation between time to achieve 95% of VO₂max and spending time at VO₂max (r=-0.526, p<0.05). The no significant difference among playing positions was found without time to achieve 95% of VO_2 max. The centerbacks had higher time to achieve 95% of VO_2 max values than goalkeepers (p<0.05) but no significiant difference among other playing positions was found (p>0.05). Consequently, it could be said that reaching to steady-state level early during exercise could shorten time to achieve 95% of VO₂max and increase spending time at VO₂max.

Key Words: Oxygen uptake kinetics, soccer, play position.

GENÇ FUTBOL OYUNCULARININ OKSİJEN TÜKETİMİ KİNETİKLERİNİN MEVKİLERİNE GÖRE KARŞILAŞTIRILMASI

Özet

Bu çalışmanın amacı genç futbol oyuncularının oksijen tüketimi kinetikleri ile solunum eşiği değerleri arasındaki ilişkiyi belirlemek ve oyuncuların mevkilerine göre oksijen tüketimi kinetikleri ve solunum eşiği değerlerini karşılaştırmaktır. 23 genç futbol oyuncusu gönüllü olarak çalışmaya katılmıştır (n = 23, yaş: 19.8±0.4 yıl, boy uzunluğu: 179.4±7.2 cm., vücut ağırlığı: 74.2±7.4 kg., VO2max: 59.7±8 ml/kg/dk.). Maksimum oksijen tüketimi (VO₂max) ve solunum esiği değerleri, koşu bandında uygulanan ve koşu hızı giderek artan test protokolüyle belirlenmiştir. Daha sonra VO₂max değerine tekabül eden koşu hızında test uygulanmıştır ve oksijen tüketim kinetiği değerleri mono-exponentinal model yardımıyla belirlenmistir. VO₂max değerinin % 95'ine ulasılan süre ve VO2max değerinde geçirilen süre, oksijen tüketimi kinetikleri olarak kabul edilmiştir. VO2max değerinin % 95'ine ulaşılan süre, VO₂max değerinde geçirilen süre ve solunum esiği değerleri arasındaki ilişkiler korelasyon analiziyle, mevkilere göre farklılıklar ise tek yönlü varyans analiziyle belirlenmiştir. VO2max değerinin % 95'ine ulaşılan süre ile VO2max değerinde geçirilen süre arasında negatif yönlü ve anlamlı bir ilişki tespit edilmiştir (r=-0.526, p<0.05). VO2max değerinin % 95'ine ulaşılan süre hariç olmak üzere diğer değerler bakımından oyuncuların mevkileri arasında anlamlı farklılık görülmemiştir. VO2max değerinin % 95'ine ulaşılan süre bakımından stoper oyuncularının kalecilerden daha yüksek değerlere sahip olduğu (p < 0.05), diğer mevkiler arasında ise herhangi bir farklılık olmadığı belirlenmiştir. Sonuç olarak egzersizde steady-state seviyesine kısa zamanda ulaşmanın VO2max değerinin % 95'ine ulaşılan süreyi kısaltabileceği ve VO2max değerinde geçirilen süreyi arttırabileceği ifade edilebilir.

Anahtar Kelimeler: Oksijen tüketim kinetikleri, futbol, mevki.

Introduction

The capacity of oxygen using during exercise was important for performance. Maximum oxygen uptake (VO₂max) was the highest oxygen amount utilized by body during exercise (Bassett and Howley, 2000). VO₂max is a important parameter effecting aerobic performance of athletes. At initial of incremental exercise, oxygen uptake (VO₂) increases linearly until steady-state level is achieved. VO₂ rises mono-exponentially to reach steady-state level within 2-3 minutes after onset of constant moderate exercise (Carter et al., 2000). The oxygen deficit exists at part between initial of incremental exercise and steady-state level. The amount of oxygen deficit effects reach time to steady state level. Time constant parameter (τ) is estimated by exponential function during period of reach to steady-state level (Burnley and Jones, 2007) The τ parameter is equal to 63 % of final VO₂ response determined by monoexponential function (Jones and Poole, 2005) The τ parameter determines amount of oxygen deficit. It means that a smaller value of τ parameter diminishes reach time to steady state level and is required to anaerobic energy systems. The fatigue will be delayed since it is smally required to support of anaerobic energy systems (Burnley and Jones, 2007).

Soccer is a intermittent sport branch required high level of aerobic fitness parameters. The avarage VO₂max values of elite soccer players was determined between 56.8 and 67.6 ml/kg/min (Al-Hazzaa et al., 2001; Árnason et al., 2004; Bangsbo and Lindquist, 1992; Bangsbo et al., 1991; Casajús, 2001; Davis et al., 1992; Rhodes et al., 1986; Strudwick et al., 2002; Wisloeff et al., 1998). Also, it was determined that increase of VO₂max and running economy (5 ml/kg/min and 7 %, respectively) improved match performance of soccer players (Chamari et al., 2005; Helgerud et al., 2001). The energy costs of activities performed at soccer game such as dribbling with ball are similar to energy costs of laboratory treadmill tests performed with inclination for determining VO₂max (Kemi et al., 2003). The soccer players having high values of aerobic capacity performs soccer activities with less energy cost and delays fatigue at exercise as VO₂ of muscles is high.

Although many studies were performed regarding activity profiles and covered distance values during soccer game of young soccer players, no study was performed regarding VO₂ kinetics of young soccer players according to playing position. The investigating of VO₂ kinetics of young soccer players according to play position will be useful for developing performances of players, planning of trainings and determining of physiological requirements of play positions. Therefore, aim of this study was to compare VO₂kinetics and ventilatory threshold (Vt) values of young soccer players according to playing position, to determine relationship between VO₂ kinetics and Vt values of young soccer players and to test the hypothesis that VO₂ kinetics and Vt values of young soccer players will diferentiate according to playing positions.

Method

Research Group

Twenty-three young soccer players playing young team category of professional soccer team placing Turkish Super League participated to this study voluntarily (n=23; age: 19.8±0.4 years; body height: 179.4±7.2 cm; body mass: 74.2±7.4 kg; VO₂max: 59.7±8 ml/kg/min). Twenty-three young soccer players were divided to six playing position categories as goalkeepers (n=3; age: 19.7±0.5 years; body height: 186.3±1.5 cm; body mass: 83.1±2.8 kg; VO₂max: 52.3 ± 1.2 ml/kg/min), fullbacks (n=4; age: 19.8±0.5 years; body height: 176.8±2.8 cm; body mass: 67.9 ± 4.7 kg; VO₂max: 62.3 ± 0.5 ml/kg/min), centerbacks (n=4; age: 19.8±0.5 years; body height: 185.5±7.9 cm; body mass: 79.3±9.9 kg; VO₂max: 59.3 ± 5.6 ml/kg/min), midfielders (n=4; age: 19.8±0.5 years; body height: 176.8±2.8 cm; body mass: 67.9 ± 4.7 kg; VO₂max: 69.3 ± 8.8 ml/kg/min), wingers (n=4; age: 19.8±0.5 years; body height: 169.8±1.7 cm; body mass: 68.0 ± 1.2 kg; VO₂max: 58.3 ± 3.4 ml/kg/min), forwards (n=4; age: 20 years; body height: 182.3±2.6 cm; body mass: 74.4 ± 0.7 kg; VO₂max: 55 ± 11.2 ml/kg/min). The study was applied according to the Helsinki Declaration and objective and possible risks of study were explained to all participiants. Also, it was said that all participiants could leave from study at any time.

Collection of Datas

The research was performed at pre-season period of young soccer team. The young soccer team had pre-season preparatory camp. The VO₂max and Vt values of young soccer players were measured by incremental treadmill test. All players were informed about test protocol. Maximum effort was exhibited by players during test protocol. The incremental treadmill test was performed for determining VO₂max and Vt values of young soccer players. The initial velocity of incremental velocity test was 10 km/h. Then velocity was increased by 1 km/h at every 3 minutes until exhaustion. The test was finished when players exhausted and didn't continue test due to fatigue. VO₂ values during incremental test were measured as breath-by breath by telemetric system (Cosmed K4b², Rome, Italy). Average values of expired gas at every 5 seconds were determined during incremental test. Before incremental test, calibration of oxygen analyzer system was done according to instructions of device calibration. The criterias of VO₂max determination were plateau in VO₂ despite constant increase of running velocity and heart rate value passing 90% of maximal heart rate predicted previously (Taylor et al., 1955). The running velocity of VO₂max (vVO₂max) was determined by identify the lowest running velocity VO₂max occured (Billat and Koralsztein, 1996). Also Vt was determined by incremental treadmill test.

After 3 days from incremental test, players performed treadmill test at 100% of vVO₂max (100% vVO₂max test) until exhaustion. Before 100% vVO₂max test, players performed warm-up for 15 minutes at 60% of vVO₂max and stretching exercises for 5 minutes. 100% vVO₂max test was initialized and players were encouraged for maintaining test until exhaustion. VO₂ value was measured by gas

analyzer during test. VO_2 plateau was observed at 95% of VO_2 max. Therefore time to achieve 95% of VO_2 max (ta-95% VO_2 max) was time to achieve VO_2 max (ta- VO_2 max). The ta-95% VO_2 max and spending time at VO_2 max (t- VO_2 max) values of players were computed as below:

$$VO_2 (t) = VO_{2baseline} + A x (1 - e^{-(t / \tau)})$$
(Mono-exponential function) (1)

At this mono-exponential function, $VO_2(t)$ is oxygen uptake value of time t, $VO_{2baseline}$ is oxygen uptake value measured after warm-up period, A is amplitude at oxygen uptake value ($VO_2max - VO_{2baseline}$) and τ is time constant (Barstow and Mole, 1991).

The formula of mono-exponential function (equation 1) was regulated as below:

$$VO_2 (t) = VO_{2baseline} + A x (1 - e^{-(t/\tau)})$$
(1)

For determination of t (time);

$$t = -\tau x \ln[1 - (VO_2(t) - VO_{2baseline}) / A]$$
(2)

The ta-95%VO₂max value was equaled to ta-VO₂max value. Therefore this equation could be expressed as below;

$$ta-95\% VO_2 max = -\tau x \ln[1 - (95\% VO_2 max - VO_{2baseline}) / A]$$
(3)

The t-VO₂max value was calculated as exhaustion time of test (t-exh.) minus ta-95% VO₂max:

$$t-VO_2max = t-exh - ta-95\% VO_2max$$

Analyze of Datas

The normality distribution of datas was determined by Shapiro-Wilks test and it was seen that datas had normal distribution. The datas of this study were analyzed by SPSS statistical package programme (SPSS 16.0, SPPS Inc., Chicago, USA). One-way analyses of variance (one-way ANOVA) was used for comparing ta-95% VO₂max, t-VO₂max and Ve values of young soccer players according to playing positions. The differences according to playing positions were determined by Scheffe's Post Hoc tests from one-way analysis of variance (one-way ANOVA). The correlation among ta-95% VO₂max, t-VO₂max and Vt values of young soccer players was determined by Pearson correlation coefficient. The level of statistical significiance of all analyzes was assumed at p<0.05.

Results

Table 1. The Values of VO2max, Vt, ta-95% VO2max, t-VO2max and Et Parameters of Young SoccerPlayers According to Playing Positions.

(4)

Plaving	VO2max	VO2max	Vt	Vt	ta-95%	t-VO ₂ max	Et
Position	(ml/min)	(ml/kg/min)	(ml/min)	(ml/kg/min)	VO ₂ max (sec)	(sec)	(sec)
Goalkeeper	4355,4	51	2818	33	213	171	384
Goalkeeper	4240	53	2960	37	223	143	366
Goalkeeper	4452	53	3108	37	221	157	378
Mean±SD	4349,1±106,1	52,3±1,2	2962±145	35,7±2,3	219±5,3*	157±14	376±9,2
Fullback	4158	63	3102	47	235	122	357
Fullback	4061	62	2882	44	243	128	371
Fullback	4036,2	62	3190	49	283	120	403
Fullback	4650	62	3375	45	227	147	374
Mean±SD	4226,3±287,3	62,3±0,5	3137±204,7	46,3±2,2	247±24,9	129,3±12,3	376,3±19,3
Center-back	5540,1	59	4413	47	271	129	400
Center-back	4114,8	54	3429	45	275	123	398
Center-back	5025	67	3225	43	265	124	389
Center-back	4104	57	3096	43	261	154	415
Mean±SD	4696±709,2	59,3±5,6	3540,8±597,4	44,5±1,9	268±6,2*	132,5±14,6	400,5±10,8
Midfielder	5148	78	4290	65	223	147	370
Midfielder	6179	74	4008	48	257	126	383
Midfielder	4431,2	58	3056	40	229	135	364
Midfielder	4891	67	3139	43	275	135	410
Mean±SD	5162,3±739,8	69,3±8,8	3623,3±618,8	49±11,2	246±24,4	135,8±8,6	381,8±20,4
Winger	4347	63	3243	47	223	138	378
Winger	3685	55	3015	45	271	140	411
Winger	3933	57	2967	43	243	137	380
Winger	3886	58	3015	45	257	145	402
Mean±SD	3962,8±277,8	58,3±3,4	3060±124,1	45±1,6	248,5±20,5	140±3,6	392,8±16,3
Forward	2948	40	2358	32	245	114	359
Forward	4875	65	3525	47	214	130	344
Forward	3922	53	2960	40	233	153	386
Forward	4650	62	3600	48	224	166	390
Mean±SD	4098,8±868,3	55±11,2	3110,8±577,4	41,8±7,4	229±13,2	140,8±23,2	369,8±22
Total	4418,8±668,7	59,7±8	3251±470	44±6,5	245±22**	138±15**	383,1±18,8

*Significiant difference between playing psisitions at p<0.05 level; **Significiant correlation between parameters at p<0.05 level.

Table 2. The Values of VO2max, Vt, ta-95% VO2max, t-VO2max and Et Parameters of Young SoccerPlayers According to Playing Positions During Treadmill Test at 100% of vVO2max.

Playing Position	VO _{2baseline} (ml/min)	A (ml/min)	T (sec)
Goalkeeper	650	3705,4	75
Goalkeeper	690	3550	79
Goalkeeper	515	3937	77
Mean±SD	618,3±91,7	3730,8±194,7	77±2
Fullback	520	3638	82
Fullback	630	3431	86
Fullback	523	3513,2	99
Fullback	515	4135	79
Mean±SD	547±55,4	3679,3±315,5	86,5±8,8
Center-back	750	4790,1	95
Center-back	710	3404,8	98
Center-back	684	4341	93
Center-back	592	3512	92
Mean±SD	684±67,1	4012±666,4	94,5±2,6
Midfielder	484	4664	77
Midfielder	620	5559	89
Midfielder	678	3753,2	81
Midfielder	732	4159	97
Mean±SD	628,5±106,6	4533,8±778,4	86±8,9
Winger	580	3767	84
Winger	475	3210	95
Winger	489	3444	85
Winger	508	3378	90
Mean±SD	513±46,7	3449,8±233,3	88,5±5,1
Forward	570	2378	88
Forward	490	4385	74
Forward	455	3467	81
Forward	521	4129	78
Mean±SD	509±48,8	3589,8±895,7	80,3±5,9
Total	581,8±92,1	3837±644,4	85,8±7,9

The values VO₂max, Vt, ta-95% VO₂max, t-VO₂max and t-exh parameters at 100% v VO₂max test of young soccer players are presented in Table 1. Also, values of VO_{2baseline}, A and τ parameters of young soccer players are presented Table 2. According to correlation analyze results, negative correlation at significiant level between ta-95% VO₂max and t-VO₂max was determined (r = -0.526, p<0.05). There was no significiant correlation between Vt and other parameters (Ta-95% VO₂max, t-VO₂max) (p<0.05).

The results of one-way analysis of variance according to playing positions of young soccer players showed that t-VO₂max and Vt parameters didn't differentiate among playing positions (p>0.05). Only ta-95% VO₂max parameters differentiated significiantly among playing positions (F=3,736, p<0.05). In terms of playing positions, it was seen that ta-95% VO₂max values of centerbacks were higher than ta-95% VO₂max values of goalkeepers (219±5,29 sec., 268±6,22 sec., p<0.05, respectively). There was no significiant difference among other playing positions without difference between goalkeepers and centerbacks (p>0.05).

Discussion and Conclusion

It was said that oxygen was derived at onset of constant load exercise by anaerobic energy systems. Oxygen debt occured until VO₂ reached plateu level. The ta-95% VO₂max parameter meant that VO₂max was occured. The t-VO₂max parameter related to balance between ta-VO₂max and t-exh parameters (Billat et al., 2000). The ta-95% VO₂max parameter had negative correlation with t-VO₂max parameter. This meant that higher ta-95% VO₂max values caused lower t-VO₂max values. In terms of VO₂max values, it was seen that VO₂max values of young soccer players (59,7±8 ml/kg/min) were similar to VO₂max values of middle (59,8±1,2 ml/kg/min) and long (60,2±1,5 ml/kg/min) distance runners found at study of Kilding et al. (2006). This similarity indicates that young soccer and runners may have similar VO₂max and aerobic capacity values. Soccer is a sport needing high aerobic endurance. Therefore, aerobic capacities of young soccer players must be at high level and similarity to aerobic capacity values of middle and long distance runners can be accepted normally.

Dupont et al. (2010) determined oxygen uptake kinetics by mono-exponentinal model and VO₂ values measured after severe intensity exercise were lower than VO₂max values of young soccer players measured at our study ($3648,8\pm563,7$ ml/kg/min, $4418,8\pm668,7$ ml/kg/min, respectively). Amateur young soccer players were involved at both studies and young soccer players placing at our study had higher VO₂ values than young soccer players of other study. Also, Dupont et al. (2005) determined VO₂max values of soccer players playing at regional league and these values ($59,4\pm4,2$ ml/kg/min) were paralelled to VO₂max values of our study. Additionally, Dupont et al. (2005) determined relationship between VO₂ kinetics and repeated sprints at this study.

Hill et al. (2003) determined VO₂ kinetics at treadmill and cycle ergometer by three exponential model and τ value of phase 3 at treadmill test (86±39 sec). Although determination models

of VO₂ kinetics was different, τ values were determined as similar. It could be said that τ values of three exponential model might be similar to τ values of mono-exponential model. The VO₂ values at threshold level determined at study of Carter et al. (2002) were similar to Vt values of our study (3036±199 ml/kg, 3251±470 ml/kg, respectively). The Vt is a important variable for athletes performance. The Vt is a deflection point of linearity between minute ventilation and VO₂ (Gökbel, 2012). After Vt, ventilation increases excessively due to carbondioxide (CO₂) occured by elemination of lactate arising as last product of anaerobic metabolism (MacArdle et al., 2010; Gökbel, 2012). This situation is a factor increased respiratory exchange rate (RER). RER was determined by production of carbondioxide (VCO₂) divided to VO₂ (RER=VCO₂/VO₂) and this rate surpasses 1.00 value as VCO₂ increases (Gökbel, 2012).

The Vt is a indicator of endurance performance. There was no correlation between Vt and other parameters (ta-95%VO₂max, t-VO₂max) in our study. The situation could rise from individual aerobic capacities of young soccer players. It is possible individual differences at aerobic capacity values.

According to playing positions of young soccer players, there was no significiant difference among playing positions in terms of t-VO₂max and Vt parameters (p>0.05). In terms of ta-95% VO₂max parameter, it was seen that difference between goalkeeper and centerback playing positions was significiant (p<0.05). According to Scheffe's test results, no significiant difference among other playing positions was determined (p>0.05). Davis et al. (1992) determined that predicted VO₂max values of midfield players were the highest values among all playing positions and these values were higher than predicted VO₂max values of centerbacks (p<0.05). Conversely, it was determined that ta-95% VO₂max values were similar to other playing positions without centerbacks. It was said that most of young soccer players had similar aerobic capacity values. The high VO₂max values of players placing at different playing positions could help them during soccer match and these players could eliminate lactate inducing fatigue. Therefore, performances of players could stay at high level without fatigue.

Rampinini et al. (2010) obtained that Yo-Yo intermittent recovery test level 1 and level 2 performances correlated with VO₂max values positively (r=0,74; r=0,47, respectively) and τ values negatively (r= -0,60; r= -0,65, respectively). According to this findings, the shorter τ values meant higher aerobic performance. In our study, it was determined that the shorter ta-95% VO₂max values caused higher values of t-VO₂max. These findings were similar to findings obtained by Rampinini et al. (2010). Boone et al. (2012) obtained that fullbacks and midfielders had higher VO₂max values (61,2 ± 2,7 ml/kg/min; 60,4 ±2,8 ml/kg/min, respectively) than VO₂max values of strikers (56,8 ± 3,1 ml/kg/min) centerbacks (55,6 ± 3,5 ml/kg/min) and goalkeepers (52,1 ± 5 ml/kg/min). The fullbacks and midfielders performed many efforts for positional roles as winning ball and tackling during match. Therefore, they must have high level physical capacity and aerobic endurance. These results confirmed this thesis. In terms of ta-95% VO₂max values, findings of our study didn't report any significiant differences among

playing positions without significant difference between goalkeepers and centerbacks. In this regard, our study didn't agree with study of Boone et al (2012).

The findings of this research revealed significiant negative correlation between ta-95% VO₂max and t-VO₂max of young soccer players. The VO₂ kinetics of young soccer players were determined by mono-exponentinal model at test of 100 %vVO₂. The Vt didn't have any significiant correlation with ta-95% VO₂max and t-VO₂max parameters. Also, no significiant difference was determined among playing positions in terms of t-VO₂max and Vt parameters . Only, it was seen significiant difference between goalkeepers and centerbacks in terms of ta-95% VO₂max parameter. The many studies at literatüre focused aerobic capacities parameters such as VO₂max and some of them were parallel to our study in terms of results. The VO₂ kinetics are valuable for evaluation of aerobic performance. According to negative correlation between ta-95% VO₂max parameters, it can be said that t-VO₂max parameters depend on ta-95% VO₂max parameters and reaching to steady-state level as soon as possible during exercise and maintaining exercise at this level were important for aerobic performance within the context of t-VO₂max.

References

- Al-Hazzaa, H., Al-Muzaini, K., Al-Refaee, S., Sulaiman, M., Dafterdar, M., Al-Ghamedi, A., Al-Khuraiji, K. (2001). Aerobic and Anaerobic Power Characteristics of Saudi Elite Soccer Players. *Journal of Sports Medicine and Physical Fitness*.
- Árnason, Á., Sigurdsson, S.B., Gudmundsson, A., Holme, I., Engebretsen, L., Bahr, R. (2004). Physical Fitness, Injuries, and Team Performance in Soccer. *Medicine and Science in Sports and Exercise*, 36: 278-285.
- Bangsbo, J., Lindquist, F. (1992). Comparison of Various Exercise Tests with Endurance Performance During Soccer in Professional Players. *International Journal of Sports Medicine*, 13: 125-132.
- Bangsbo, J., Nørregaard, L., Thorsoe, F. (1991). Activity Profile of Competition Soccer. *Canadian Journal of Sport Sciences*, 16: 110-116.
- Barstow, T.J., Mole, P.A. (1991). Linear and Nonlinear Characteristics of Oxygen Uptake Kinetics During Heavy Exercise. *Journal of Applied Physiology*, 71: 2099-2106.
- Bassett, D., Howley, E.T. (2000). Limiting Factors for Maximum Oxygen Uptake and Determinants of Endurance Performance. *Medicine and Science in Sports and Exercises*, 32: 70-84.
- Billat, L.V., Koralsztein, J.P. (1996). Significance of the Velocity at VO₂max and Time to Exhaustion at This Velocity. *Sports Medicine*, 22: 90-108.

- Billat, V., Morton, R., Blondel, N., Berthoin, S., Bocquet, V., Koralsztein, J., Barstow, T. (2000).
 Oxygen Kinetics and Modelling of Time to Exhaustion Whilst Running at Various Velocities at Maximal Oxygen Uptake. *European Journal of Applied Physiology*, 82: 178-187.
- Boone, J., Vaeyens, R., Steyaert, A., Bossche, L.V., Bourgois, J. (2012). Physical Fitness of Elite Belgian Soccer Players By Player Position. *Journal of Strength and Conditioning Research*, 26: 2051-2057.
- Burnley, M., Jones, A.M. (2007). Oxygen Uptake Kinetics as A Determinant of Sports Performance. *European Journal of Sport Science*, 7: 63-79.
- Carter, H., Jones, A.M., Barstow, T.J., Burnley, M., Williams, C.A., Doust, J.H. (2000). Oxygen Uptake Kinetics in Treadmill Running and Cycle Ergometry: A Comparison. *Journal of Applied Physiolology*, 89: 899-907.
- Carter, H., Pringle, J.S., Jones, A.M., Doust, J.H. (2002). Oxygen Uptake Kinetics During Treadmill Running Across Exercise Intensity Domains. *European Journal of Applied Physiology*, 86: 347-354.
- Casajús, J.A. (2001). Seasonal Variation in Fitness Variables in Professional Soccer Players. *Journal of Sports Medicine and Physical Fitness*, 41: 463-469.
- Chamari, K., Hachana, Y., Kaouech, F., Jeddi, R., Moussa-Chamari, I., Wisløff, U. (2005). Endurance Training and Testing with the Ball in Young Elite Soccer Players. *British Journal of Sport Medicine*, 39: 24-28.
- Davis, J., Brewer, J., Atkin, D. (1992). Pre-Season Physiological Characteristics of English First and Second Division Soccer Players. *Jornal of Sport Sciences*, 10: 541-547.
- Dupont, G., Millet, G.P., Guinhouya, C., Berthoin, S. (2005). Relationship Between Oxygen Uptake Kinetics and Performance in Repeated Running Sprints. *European Journal of Applied Physiology*, 95: 27-34.
- Dupont, G., McCall, A., Prieur, F., Millet, G.P., Berthoin, S. (2010). Faster Oxygen Uptake Kinetics During Recovery Is Related to Better Repeated Sprinting Ability. *European Jornal of Applied Physioologyl*, 110: 627-634.
- Gökbel, H. (2012). Acute and Chronic Adaptations of the Respiratory System to Physical Exercise. *Eurasian Journal of Pulmonology*, 14: 9-11.
- Helgerud, J., Engen, L.C., Wisloff, U., Hoff, J. (2001). Aerobic Endurance Training Improves Soccer Performance. *Medicine and Science in Sports and Exercise*, 33: 1925-1931.
- Hill, D.W., Halcomb, J.N., Stevens, E.C. (2003). Oxygen Uptake Kinetics During Severe Intensity Running and Cycling. *European Journal of Applied Physiolology*, 89: 612-618.
- Jones, A.M., Poole, D.C. (2005). Oxygen Uptake Kinetics in Sport, Exercise and Medicine. London: Routledge.

- Kemi, O., Hoff, J., Engen, L., Helgerud, J., Wisløff. U. (2003). Soccer Specific Testing of Maximal Oxygen Uptake. *Journal of Sports Medicine and Physical Fitness*, 43: 139.
- Kilding, A.E., Winter, E.M., Fysh, M. A. (2006). Comparison of Pulmonary Oxygen Uptake Kinetics in Middle-and Long-Distance Runners. *International Journal of Sports Medicine*, 27: 419-426.
- McArdle, W.D., Katch, F.I., Katch, V.L. (2010). *Exercise Physiology: Nutrition, Energy, and Human Performance*. Lippincott Williams & Wilkins.
- Rampinini, E., Sassi, A., Azzalin, A., Castagna, C., Menaspà, P., Carlomagno. D., Impellizzeri, F.M. (2010). Physiological Determinants of Yo-Yo Intermittent Recovery Tests in Male Soccer Players. *European Journal of Applied Physiology*, 108: 401-409.
- Rhodes, E., Mosher, R., McKenzie, D., Franks, I., Potts, J., Wenger, H. (1986). Physiological Profiles of the Canadian Olympic Soccer Team. *Canadian Journal of Applied Sport Science*, 11: 31.
- Strudwick, A., Reilly, T., Doran, D. (2002). Anthropometric and Fitness Profiles of Elite Players in Two Football Codes. *Journal of Sports Medicine and Physical Fitness*, 42: 239.
- Taylor, H.L., Buskirk, E., Henschel, A. (1955). Maximal Oxygen Intake as An Objective Measure of Cardio-Respiratory Performance. *Journal of Applied Physiology*, 8: 73-80.
- Wisloeff, U., Helgerud, J., Hoff, J. (1998). Strength and Endurance of Elite Soccer Players. *Medicine and Science in Sports and Exercise*, 30: 462-467.

Ordu University Physical Education and Sports School Turkey. E-mail:arierdal@hotmail.com