BIOLOGICAL EFFECTS OF THE ENTOMOPATHOGENIC FUNGUS, BEAUVERIA BASSIANA ON THE POTATO TUBER MOTH PHTHORIMAEA OPERCULELLA (SELLER)

M. HAFEZ* F. N. ZAKI** A. MOURSY* M. SABBOUR**

SUMMARY: The series of investigations have been carried out on the effect of the entomopathogenic fungi Beauveria bassiana on the various developmental stages of Phthorimaea operculella. Both first and second instar larvae were more susceptible than the third of fourth instars. The infected prepupae and pupae resulted in marked decreases in the emergence and longevity of moths, deposited eggs and their egg hatchability. An obvious increase in the pupal duration was observed and the resulting malformed adults were also recorded. The latent were markedly obvious, specially in high doses of B. bassiana.

Key Words: Beauveria bassiana.

INTRODUCTION

Using of pathogens, as biological control agents of some insect species, has been increased during the last few years. Beauveria bassiana, as an entomopathogenic fungus, has been used to suppress the population of the European corn borer, Ostrinia nubilalis (Hubner) (1,4,6,9,11,14). More than 30 entomopathogenic fungi have been tested as biological control preparations of different insect pests (2,3,5,7,8,10, 12,13).

The present work was carried out to study the effect of B. bassiana on the different larval developmental stages of the potato tuber moth Phthorimaea operculella.

MATERIALS AND METHODS

To assess the virulence of Beauveria bassiana, the commercial formulation Boverol was used in the present study. Cohorts of newly moulted or hatched 1st, 2nd, 3rd, and 4th

Journal of Islamic Academy of Sciences 7:4, 211-214, 1994

instar larvae of P. operculella were used. These were infected by spraying 10 ml of an aqueous suspension of Beauveria conidia-spore, containing 16.5×10^8 , 8.25×10^8 , 4.12×10^8 , 2.06×10^8 , 1.03×10^8 , and 0.5×10^8 conidia/ml on the inner surface of sterile plastic Petri-dishes. Into each dish, 10 individuals were introduced and left in contact with the inoculum cohorts of each instar (50 larvae per cohort) were used for each concentration of Beauveria. The larvae were then placed in clean Petri-dishes (15 cm diameter by 4 cm deep) and fed potato tubers. Control larvae were fed also potato tubers, and reared at 26 ± 2 c and 70% R.H.

Cohorts of prepupae and pupae (50 per cohort) were treated with a conidial inoculum, using a Camel, s hair brush.

Table 1: Effect of B. bassiana on different larval instars of P. operculella.

Larval instar	LC ₅₀ conidia/ml	Slope	Variance	Confidence limits (95%)
First	1.98x10 ⁸	1.209	0.0065	1.26x10 ⁸ -2.75x10 ⁸
Second	2.13x10 ⁸	1.070	0.0077	1.30x10 ⁸ -3.09x10 ⁸
Third	4.08x10 ⁸	0.906	0.0121	1.97x10 ⁸ -6.19x10 ⁸
Fourth	4.71x10 ⁸	1.242	0.0073	2.85x10 ⁸ -6.56x10 ⁸

^{*} From Department of Entomology, Faculty of Science, Cairo University, Cairo, Egypt.

^{**} From Department of Plant Protection, National Research Center, Dokki, Cairo, Egypt.

HAFEZ, ZAKI, MOURSY, SABBOUR

RESULTS AND DISCUSSION

Mortalities of P. operculella larvae exposed to a concentrations of 16.5×10^8 of B. bassiana indicated that these larvae were susceptible to the pathogen. The calculated LC 50's for B. bassiana were (4.7×10^8) conidia/ml, for the 1st, 2nd, 3rd, and 4th instar larvae, respectively (Table 1).

The duration of the treated pupae was significantly prolonged at concentrations ranged from 16.5x10⁸ to 2.06x10⁸ conidia/ml as compared with the control, while at low concentrations of 1.03x10⁸ to 0.26x10⁸ conidia/ml, there was no obvious effect as compared to the control.

The percentage of moth emergence showed a highly progressive decrease with the increase of concentration of B. bassiana. Thus emergence decreased

from 100% in the control to 0% at 16.5×10^8 conidia/ml. An obvious malformation was observed among the emerged moths after treatment of the prepupae with any of the used concentrations.

The longevity of the emerged adults was significantly affected being shorter after exposure of the prepupae to B. bassiana. The egg production of the female, progressively decreased from 90.83 ± 10.93 to 32.00 ± 1.12 eggs/female, with the increase in the concentration of B. bassiana from 0.26 to 4.12 (x10⁸) conidia/ml as compared to 179.93 ± 23.99 eggs/female, in the control. At concentrations of $16.5x10^8$, $8.5x10^8$ conidia/ml, no eggs were obtained (Table 2).

The duration of treated pupae was significantly prolonged at concentrations of 16.5x10⁸, 2.06x10⁸ conidia/ml, as compared to control (Table 3).

Conc. Conidia/ml		16.5	8.25	4.12	2.06	1.03	0.52	0.26	Control
		(x10 ⁸)							
Pupal dura	tion	$8.9 \pm 0.47 8.66 \pm 0.33 7.5 \pm 0.22 7.75 \pm 0.25 7.44 \pm 0.17 7.2 \pm 0.13 6.75 \pm 0.25 7.44 \pm 0.17 7.2 \pm 0.13 6.75 \pm 0.25 7.44 \pm 0.17 7.2 \pm 0.13 6.75 \pm 0.25 7.44 \pm 0.17 7.2 \pm 0.13 6.75 \pm 0.25 7.44 \pm 0.17 7.2 \pm 0.13 6.75 \pm 0.25 7.44 \pm 0.17 7.2 \pm 0.13 6.75 \pm 0.25 7.44 \pm 0.17 7.2 \pm 0.13 6.75 \pm 0.25 7.44 \pm 0.17 7.2 \pm 0.13 6.75 \pm 0.25 7.44 \pm 0.17 7.2 \pm 0.13 6.75 \pm 0.25 7.44 \pm 0.17 7.2 \pm 0.13 6.75 \pm 0.25 7.44 \pm 0.17 7.2 \pm 0.13 6.75 \pm 0.25 7.44 \pm 0.17 7.2 \pm 0.13 6.75 \pm 0.25 7.44 \pm 0.17 7.2 \pm 0.13 7.5 \pm 0.25 7.44 \pm 0.17 7.2 \pm 0.13 7.5 \pm 0.25 7.44 \pm 0.17 7.2 \pm 0.13 7.5 \pm 0.25 7.44 \pm 0.17 7.2 \pm 0.13 7.5 \pm 0.25 7.44 \pm 0.17 7.2 \pm 0.13 7.5 \pm 0.25 7.44 \pm 0.17 7.2 \pm 0.13 7.5 \pm 0.25 7.44 \pm 0.17 7.2 \pm 0.13 7.5 \pm 0.25 7.44 \pm 0.17 7.2 \pm 0.13 7.5 \pm 0.25 7.44 \pm 0.17 7.2 \pm 0.13 7.5 \pm 0.25 7.44 \pm 0.17 7.2 \pm 0.13 7.5 \pm 0.25 7.44 \pm 0.17 7.2 \pm 0.13 7.5 \pm 0.25 7.44 \pm 0.17 7.5 \pm 0.25 7.44 7.4$				6.75 ± 0.25	6.25 ± 0.25		
% of emer	gence	26.6	45	63.5	70	77	80	90	100
% of malformation		60	50	33.3	22.7	20	10	5	-
Average longevity in days	males	3	4.66 ± 0.33	4.25 ± 0.47	5.6 ± 0.37	6.6 ± 0.24	7.5 ± 0.42	9.1 ± 0.3	12.6 ± 1.68
	females	4	4.5 ± 0.5	5.5 ± 0.5	7.2 ± 0.37	7.8 ± 0.37	8.6 ± 0.24	9.3 ± 0.3	3.8 ± 1.8
No of eggs/female		0	0	32 ± 1.1	42.2 ± 10.4	53.8 ± 17.2	71.8 ± 14.5	90.8 ± 10.9	179.9 ± 23.9
% of hatching		0	0	10	22	45	80	85	100

Table 2: Effect of different concentrations of B. bassiana as suspension on the prepupae of P. operculella.

Table 3: Effect of different concentrations of B. bassiana as suspension on the pupae of P. operculella.

Conc.		16.5	8.25	4.12	2.06	1.03	0.52	0.26	Control
Conidia/ml		(x10 ⁸)							
Pupal dura in days	ition	15 8.99 \pm 0.47 8.66 \pm 0.33 7.77 \pm 0.22 7.44 \pm 0.17 6.75 \pm 0.21 6.75 \pm 0.21 6.75 \pm					$\textbf{6.75} \pm \textbf{0.21}$		
% of emerg	gence	10	16	23.3	30	36.6	40	53.3	96.7
% of m adults	nalformed	100	35	30	20	17	15	12	0
Adult	males	1	3	3 ± 0.18	4.2 ± 0.47	5 ± 0.63	6.5 ± 0.42	8.2 ± 0.47	12.26 ± 1.6
longevity	females	-	4	3.66 ± 0.33	4.6 ± 0.5	6.2 ± 0.37	7.83 ± 0.47	9.6 ± 0.37	13.1 ± 1.7
No of eggs/female		0	0	0	66 ± 13.5	80.2 ± 14.8	101 ± 19	138 ± 34.5	189 ± 57.2
% of hatch	ing	0	0	0	70	75	85	88.8	95

Journal of Islamic Academy of Sciences 7:4, 211-214, 1994

Conc. conidia/ml	$\begin{array}{c} \text{Male longevity in days} \\ \text{mean} \pm \text{S.E.} \end{array}$	$\begin{array}{c} \mbox{Female longevity in days} \\ \mbox{mean} \pm \mbox{S.E.} \end{array}$	Deposited eggs/female mean ± S.E.		
16.5x10 ⁸	9.3 ± 0.4	11.4 ± 0.24	103.3 ± 15.8		
8.25x10 ⁸	10.2 ± 0.37	11.8 ± 0.37	105.2 ± 23.6		
4.12x10 ⁸	10.6 ± 0.5	12.2 ± 0.3	112.7 ± 15.9		
2.06x10 ⁸	11.4 ± 0.5	12.4 ± 0.4	112.8 ± 14.19		
1.03x10 ⁸	11.5 ± 0.3	12.3 ± 0.66	116.1 ± 15.34		
0.52x10 ⁸	12.1 ± 0.23	13.0 ± 0.77	135.8 ± 13.43		
0.26x10 ⁸	12.2 ± 0.57	13.3 ± 0.29	138.9 ± 3.35		
Control	12.9 ± 0.11	13.6 ± 0.4	146.3 ± 11.43		
(Untreated					

Table 4: Effect of different concentrations of B. bassiana on adult P. operculella.

The percentage of moth emergence showed a highly progressive decrease with the increase in the concentrations of B. bassiana. Thus emergence decreased from 96.7% in the control to 10% at 16.5x10⁸ conidia/ml. An obvious malformation was observed among the emerged moths after treatment of the pupae with any of the used concentrations, also the longevity of emerged adults was significantly affected being shorter. The egg production of the resulted females progressively decreased with the increase in the concentration of B. bassiana (Table 3).

An obvious malformation was observed among the emerged moths after treating the prepupae with concentrations varied from 16.5×10^8 to 2.06×10^8 .

Data in Table 4 show the effect of B. bassiana on the adults of P. operculella at different concentrations. The longevity of adult males was shortened to 9.3 ± 0.4 days at 16.5×10^8 conidia/ml as compared with 12.9 ± 0.11 days in the control. At the lowest concentration of 0.26×10^8 conidia/ml, the male longevity was 12.2 ± 0.57 days. At concentration of 16.5×10^8 conidia/ml, the longevity of adult females was 11.4 ± 0.24 days.

Treated adult females of P. operculella showed delayed effect on the egg production. The produced egg was 103.3 ± 15.8 at the concentration of 16.5×10^8 conidia/ml, increased to 138.9 ± 3.35 eggs/female at 0.26×10^8 conidia/ml. In the control, the egg production averaged 146.33 ± 11.43 eggs female.

Fungi reach the heamocoel through the cuticle or the mouth parts. Infection, therefore resulted from contact between a virulent infection inoculum and a susceptible insect cuticle, germination, penetration of the germ tubes through the integument and finally spread of the pathogen through the host tissues. Entomopathogenic fungi produce mycotoxine, which kill the host by inducing progressive degeneration of host tissues, due to loss of structural integrity of membranes followed by dehydration of cells as a result of fluid loss (4).

During the present study, the treatment of prepupae and pupae with different concentrations of B. bassiana preparation, resulted in decreasing the numbers of emerged adults of P. operculella which showed a high percent of malformation. Resulted adult males and females lived shorter time and laid low numbers of eggs.

The 1st and 2nd larval instars were more susceptible than the 3rd or 4th instars. Also, feeding adult females of Phthorimaea with contaminated diet, resulted in a marked decrease in the deposited eggs. B. bassiana provide a great amount of Ostrinia nubilalis and Chilo partellus suppression (9).

REFERENCES

1. Bartlett KA and Lfebure CL : Field experiments with Beauveria bassiana (Balsamo) Vuillimen; a fungus attacking the European corn borer. J Econ Ent, 27:1147-1157, 1934.

2. Ferron P and Robert PH : Virulence of entomopathogenic (fungi imperfect) for the adults of Aconthocelides obtectus

BEAUVERIA BASSIANA

HAFEZ, ZAKI, MOURSY, SABBOUR

(Coleoptera: Bruchidae). J Invert Pathol, 25:279-283, 1975.

3. Ferron P, Robert PH and Deotte A : Susceptibility of Orycts rhinoceror adults to Metarhizium anispliae. J Invent Pathol, 25:313-319, 1975.

4. Ferron P : Pest control by the fungi Beauveria bassiana and Metarhizium: In microbial control pests and plant diseases, Ed by HD Burges, Academic Press, 1970-1980, New York and London, 1981.

5. Gustelena LA : Results of the testing of microbial preparations against the large bark beetle. Ssp Biol, No (15) Pt (3):49-54, 1980.

6. Hussey NW and Tinsely TW : Impressions of insect pathology in the Peoples' Republic of China: in microbial control pests and plant diseases, Ed by HD Burges, Academic Press, 1970-1980, pp 785-795, New York and London, 1981.

7. Ignofo GM, Garcia C, Alyashina OA and Lappa NV : Laboratory and field studies with Beauveria: a mycoinsecticidal preparation of Beauveria bassiana product in the Soviet Union. J Econ Ent, 72:562-565, 1979.

8. Lecuona RC and Elves SB : Efficiency of Beauveria bassiana (Balsamo) Vuillimen, Blbrongnienientii (Sace) Rech and granulose virus on Deatraea saccharalis (F.1764) at different temperatures. J Apple Ent, 105:223-228, 1988.

9. Lewis LC and Bing LA : Bacillus thuringiensis Berl and Beauveria bassiana (Balsamo) Vuillimen. For European corn borer control: Program for immediate and season-long suppression. Can Ent, 123:387-393, 1991. 10. Moore KC and Erlandson MA : Isolation of Aspergillus parasticus spores and Beauveria bassiana (Balsamo) Vuillimen from Melanopline grasshoppers (Orthoptera:Acrididae) and Demonstration of their pathogenicety. Melanophis senguim (Fabricus) Cont Ent, 120:989-991, 1988.

11. Riba G : Field plot tests using artificial mutant of the entomopathogenic fungus Beauveria bassiana against the European corn borer, Ostrinia nubilalis (Lepidoptera: Pyralidae) Entomophaga, 29:41-48, 1984.

12. Tong-Kwee L, Mohammed R, Fee CG and Lan CC : Studies on Beauveria bassiana isolated from the Cocoa mirid, Heloptis theobromae. Crop Protec, 8:358-362, 1989.

13. West EJ and Briggs JD : In vitro toxin production by the fungus Beauveria bassiana and bioassay in greater wax moth. J Econ Ent, 61:684, 1968.

14. York GT : Field tests with the fungus Beauveria sp. for control of the European corn borer. Iowa State J Sci, 33:123-129, 1958.

Correspondence: M. Hafez Department of Entomology, Faculty of Science, Cairo University, Cairo, EGYPT.

Journal of Islamic Academy of Sciences 7:4, 211-214, 1994