SYNTHESIS OF CONDENSED 1,2,4-TRIAZOLO-HETEROCYCLES

MOHAMMED A. E. SHABAN ADEL Z. NASR MAMDOUH A. M. TAHA

SUMMARY: Dehydrogenative cyclization of hydrazones derived from aromatic aldehydes and 2hydrazino-1,3-benzothiazole, 2-hydrazinoquinoline, 2-hydrazinolepidine and 2-hydrazinopyridine using different dehydrogenating or oxidizing agents gave the corresponding 3-aryl-1,2,4-triazolo [3,4-<u>b</u>] 1,3-benzothiazoles, 3-aryl-1,2,4-triazolo [4,3-<u>a</u>] quinolines, 3-aryl-1,2,4-triazolo [4,3-<u>a</u>] lepidines and 3-aryl-1,2,4-triazolo [4,3-<u>a</u>] pyridines respectively. 1-Aroyl-2-(1,3-benzothiazol-2-yl)-, 1aroyl-2-(quinol-2-yl)- and 1-aroyl-2-(lepid-2-yl) hydrazines were also prepared and their dehydrative cyclization using acetyl chloride was attempted. Under the used conditions 1-aroyl-2-(quinol-2-yl) hydrazines directly cyclized to 1,2,4-triazolo [4,3-<u>a</u>] quinolines while 1-aroyl-2-(1,3-benzothiazol-2yl) hydrazines and 1-aroyl-2- (lepid-2-yl) hydrazines gave 1-acety-2-aroyl-1-1-(1,3-benzothiazol-2yl) hydrazines and 1-acetyl-2-aroyl-1-(lepid-2-yl) hydrazines respectively. The latter were successfully cyclized through the elimination of an acetic acid molecule to the corresponding 3-aryl-1,2,4-triazolo-heterocycle by heating in boiling phenol. Key Words: Hydrazines, hydrazones, cyclization.

INTRODUCTION

Many studies (18) have shown that condensed 1,2,4triazolo-heterocycles possess diverse biological activities such as fungicidal (5, 7, 8, 14, 15) bactericidal (5, 7, 8, 14, 15) analgesic (12), anixolytic (19) and anti-inflammatory (1) activities. This inspired us to synthesize some of these compounds namely: 3-aryl-1,2,4-triazolo [3,4-<u>b</u>] 1,3-benzothiazoles, 3-aryl-1,2,4-triazolo [4,3-<u>a</u>] quinolines, 3-aryl-1,2,4-triazolo [4,3-<u>a</u>] lepidines, and 3-aryl-1,2,4-triazolo [4,3-<u>a</u>] pyridines, which we hope to possess some biological activities.

MATERIALS AND METHODS General

Melting points were determined with a kofler block and are uncorrected. The infrared spectra (IR) were recorded for potassium bromide discs on a Unicam SP-1025 or Pye Unicam SP-

From Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Eqypt.

From Department of Chemistry, Faculty of Education, Cairo University (Faroum Branch), Egypt.

Journal of Islamic Academy of Sciences 3:4, 255-261, 1990

2000 spectrophotometers. Proton magnetic resonance (1H NMR) spectra were carried out at ambient temperature (~25°C) and at 90 MH₂ with a Varian EM-390 spectrometer for solutions in CDCI₃ or $(CD_3)_2$ SO. Follow up at the reactions and checking the homogeneity of the prepared compounds were made by performing thin-layer chromatography (TLC) on Silica gel G (Merck) pre-coated plates (layer thickness 0.25 mm) used without pre-treatment. All ratios of the solvent systems used were volume-to-volume (v/v); the distance of solvent travel was 5 cm, and the spots were detected by exposure to iodine vapor for a few minutes. All solvent evaporations were performed in a Buchi rotary evaporator under diminished pressure. Elemental microanalyses were performed in the Microanalysis Laboratory, Department of Chemistry, Faculty of Science, Alexandria University using a Perkin-Elmer model PE-240 analyzer and in the Microanalysis Unit Cairo University, Cairo, Egypt.

Hydrazones (1a-1d)

A solution of 2-hydrazino-1,3-benzothiazole (<u>1a</u>), 2-hydrazino-quinoline (<u>1b</u>), 2-hydrazinolepidine (<u>1c</u>), or 2-hydrazinopyridine (<u>1d</u>) (0.004 mole) was treated with the appropriate aromatic

aldehyde (0.004 mole) and the mixture was heated for 15 mins on a boiling water-bath. The product which separated upon attaining ambient temperature, was filtered, washed and crystallized from methanol (Table 1).

1-Aroyl-2-(1,3-benzothiazol-2-yl) hydrazines (<u>4a</u>), 1aroyl-2-(quinol-2-yl) hydrazines (<u>4b</u>), and 1-aroyl-2-(lepid-2yl) hydrazines (<u>4c</u>)

A mixture of 2-chloro-1,3-benzothiazole (<u>3a</u>), 2-chloroquinoline (<u>3b</u>), or 2-chlorolepidine (<u>3c</u>) (0.004 mole) and the appropriate aroyl-hydrazine (0.004 mole) was heated at 170–180°C for 30 mins and then allowed to attain ambient temperature. The hard mass was triturated with methanol, filtered, and crystallized from methanol-chloroform to give the title compounds (Table 2).

1-Acetyl-2-aroyl-1-(1,3-benzothiazol-2-yl) hydrazines (5a) and 1-acetyl-2-aroyl-1-(lepid-2-yl) hydrazines (5c)

A mixture of 1-aroyl-2-(1,3-benzothiazol-2-yl) hydrazines (4a) or 1-aroyl-2-(lepid-2-yl) hydrazines (4c) (0.002 mole) and acetic acid 15 ml) and acetyl chloride (15 ml) was heated under reflux for 30 mins after complete dissolution has occurred. The mixture was cooled and carefully poured into a cold saturated solution of sodium hydrogen carbonate (200 ml). The product, which separated, was filtered, washed with water, and crystallized from methanol-chloroform to give title compounds (Table 2).

3-Aryl-1,2,4-triazolo [3,4-b] 1,3-benzothiazole (2a), 3-Aryl-1,2,4-triazolo [4,3-a] quinolines (2b), 3-aryl-1,2,4-triazolo [4,3-a] lepidines (3c) and 3-aryl-1,2,4-triazolo [4,3-a]pyridines (3d)

Method (A): To a solution of the particular hydrazone (<u>1a–1d</u>, 0.003 mole) in dry dichloromethane (50 ml), lead tetraacetate (0.006 mole) was added and the mixture was heated under reflux for 3 hours. The mixture was diluted with water (50 ml) and the dark inorganic residue was filtered and washed with dichloromethane (30 ml). The organic layer was washed with a saturated sodium hydragen-carbonate solution (3x25 ml), and water (2x30 ml), and dried (Na₂SO₄). Evaporation of the solvent gave a residue which was crystallized from methanol to give the title compounds (Table 3).

Method (B): A mixture of the particular hydrazone (<u>1a–1d</u>, 0.003 mole) and sodium carbonate (2.4 gm) in chloroform (50 ml) was treated with bromine (0.2 ml) and stirred for 30 mins at ambient temperature. The inorganic residue was filtered and the filtrate and the filtrate was evaporated to dryness. The obtained residue was crystallized from methanol to give the title compounds (Table 3).

Method (C): A solution of the particular hydrazone (<u>1a–1d</u>, 0.003 mole) in ethanol (20 ml) was treated with 10% ethanolic ferric chloride (20 ml) and the mixture was heated under reflux

for 3 hours and then evaporated to dryness. The obtained dark residue was dissolved in chloroform (30 ml) and the solution was washed with water (3x10 ml), dried (Na_2SO_4) and evaporated. Crystallization of the obtained residue from methanol gave the title compounds (Table 3).

Method (D): A solution of the particular hydrazone (<u>1b–1d</u>, 0.003 mole) in dioxane (3 ml) was treated with 30% sodium hypochlorite solution (10 ml) and the mixture was heated on a boiling water-bath for 5 mins. The mixture was left to attain ambient temperature and the product which separated, was filtered, washed with water, and crystallized from methanol to give the title compounds (Table 3).

Method (E): A solution of the particular aldehyde (quinol-2-yl) hydrazone (<u>1b</u>, 0.003 mole) or (lepid-2-yl) hydrazone (<u>1c</u>, 0.003 mole) in toluene (20 ml) was heated under reflux for 10 hours with 10% palladium-on-charcoal (0.5 g). The catalyst was filtered on a celite layer and the filtrate was evaporated. The obtained product was crystallized from methanol to give the title compounds (Table 3).

Method (F): A mixture of the particular 1-acetyl-2-aroyl-(1,3benzothiazol-2-yl) hydrazine (<u>5a</u>, 0.003 mole) or 1-acetyl-2aroyl-1-(lepid-2-yl) hydrazine (<u>5c</u>, 0.003 mole) and phenol (5 ml) was heated under reflux for 24 hours. The mixture was evaporated under reduced pressure and co-evaporated with water. The resulting residue was crystallized from methanol to give the title compounds (Table 3).

RESULTS AND DISCUSSION

Dehydrogenative and oxidative cyclization of hydrazones derived from aromatic aldehydes and cyclic amidrazones are among the good methods for the preparation of a wide range of condensed 1,2,4-triazoloheterocyclic compounds (10,11,13,18). Sometimes, however, these cyclization reactions did not proceed straightforwardly as expected which led to erroneous structural assignment to the products. Thus, whereas Bower and Doyle (2) and Desphande (6) assigned the product of lead tetraacetate (LTA) oxidation of benzaldehyde 1,3-benzothiazol-2-yl hydrazones (1a, R=H) the structure of 3phenyl-1,2,4-triazolo [3,4-b] 1,3-benzothiazole (2a, R=H), Butler et al. (3) assigned the same product 1 acetyl-2-benzoyl-1-(1,3-benzothiazol-2-yl) hydrazine structure (5a, R=H). In our hands, the LTA oxidation of <u>1a</u> (R=H) gave two products, the first of which showed two amide absorption bands at 1700 and 1665 cm⁻¹ and an NH band at 3400 cm⁻¹. It is elemental analysis agreed with the molecular formula C₁₆H₁₃N₃O₂S and was assigned, therefore, the hydrazido structure 5a (R=H). Compound 5a (R=H) was unequivocally prepared from 2-chloro-1,3-benzothiazole (3a) by fusion with benzoylhydrazine to give the

Comme			Viola	Malaaular	Analyses (%) Calc/Found			IR(KBr) cm ⁻¹		
No.	R	(°C)	(%)	Formula	С	Н	N	NH	C=N	¹ H NMR (δ) ppm
1a	Н	226	78	C ₁₄ H ₁₁ N ₃ S	66.40 66.73	4.35 4.55	16.60 16.51	-	1632	8.03-6.98 (m, 10H, 9 aromatic H+ -C <u>H</u> =N)*
1a	OMe	205	80	C ₁₅ H ₁₃ N ₃ OS	63.60 63.32	4.59 4.66	14.84 14.77	-	1625	7.83-6.77 (m, 9H, 8 aromatic H+ -C <u>H</u> =N)**
1a	CI	265	80	C ₁₄ H ₁₀ N ₃ SCI	58.43 58.87	3.48 3.61	14.61 14.55		1635	12.17 (s, 1H, deuteratable, N <u>H</u>), 8.10-6.97 (m, 9H, 8 aromatic H+ -C <u>H</u> =N)**
1a	Br	285	83	$C_{14}H_{10}N_3SBr$	50.60 50.44	3.01 3.03	12.65 12.46		1635	12.18 (s, 1H deuteratable, N <u>H</u>), 8.08-7.00 (m, 9H, 8 aromatic H+ -C <u>H</u> =N)**
1a	NO ₂	290	82	$C_{14}H_{10}N_4O_2S$	56.38 56.78	3.36 3.56	18.79 18.34		1630	12.33 (s, 1H deuteratable, N <u>H</u>), 8.22-6.98 (m, 9H, 8 aromatic H+ -C <u>H</u> =N)**
1b	Н	134	77	C ₁₆ H ₁₃ N ₃	78.00 77.73	5.50 5.26	17.00 17.30		1635	
1b	OMe	101	78	C ₁₇ H ₁₅ N ₃ O	73.65 73.60	5.42 5.80	14.95 15.20	3300	1610	
1b	CI	162	68	C ₁₆ H ₁₂ N ₃ CI	68.21 68.30	4.26 4.70	14.92 15.00	-	1640	
1b	Br	176	80	$C_{16}H_{12}N_3Br$	58.90 58.50	3.68 3.75	12.88 12.80	-	1638	
1b	NO ₂	212	78	C ₁₆ H ₁₂ N ₄ O ₂	65.75 66.00	4.11 4.10	19.18 19.50		1640	
1c	Н	160	67	C ₁₇ H ₁₅ N ₃	78.16 78.15	5.75 5.96	16.09 16.30	3260 -	1625	7.77-7.15 (m, 11H, 10 aromatic H + -C <u>H</u> =N), 2.57 (s, 3H, CH ₃)*
1c	OMe	200	71	C ₁₅ H ₁₇ N ₃ O	74.23 74.22	5.84 5.94	14.43 14.49	3330	1610	7.75-6.85 (m, 10H, 9 aromatic H + -C <u>H</u> =N), 3.80 and 2.60 (m, 3H, each, 2 CH ₃)*
1c	NMe ₂	175	71	C ₁₉ H ₂₀ N ₄	75.00 75.28	6.58 6.77	18.42 18.63	3230	1618	7.95-7.13 (m, 10H, 9 aromatic H + -C <u>H</u> =N), 2.93 (s, 6H, 2CH ₃), 2.60 (s,3H, CH ₃)**
1c	CI	178	86	C ₁₇ H ₁₄ N ₃ CI	69.64 69.59	4.74 4.94	14.21 14.14	3500	1620	7.78-7.25 (m, 10H, 9 aromatic H + -C <u>H</u> =N), 2.63 (s, 3H, CH ₃)*
1c	Br	194	88	C ₁₇ H ₁₄ N ₃ Br	60.00 59.60	4.12 4.10	12.35 12.03	-	1620	7.67-7.40 (m, 10H, 9 aromatic H + -C <u>H</u> =N), 2.63 (s, 3H, CH ₃)*
1c	NO ₂	264	88	C ₁₇ H ₁₄ N ₄ O ₂	66.67 66.29	4.58 4.75	18.30 18.23	3230	1620	11.57 (s 1H, deuteratable, NH), 8.18-7.15 (m, 10H, 9 aromatic H+ -C <u>H=</u> N, 2.62 (s, 3H, CH ₃)*
1d	Н	146	72	C ₁₂ H ₁₁ N ₃	73.10 73.50	5.58 5.20	21.32 21.00	-	1605	
1d	OMe	165	80	C ₁₃ H ₁₃ N ₃ O	68.72 68.70	5.73 5.90	18.56 18.40	3250	1590	
1d	CI	196	82	C ₁₂ H ₁₀ N ₃ CI	62.20 62.10	4.32 4.40	18.14 18.50	-	1605	
1d	Br	185	77	$C_{12}H_{10}N_3Br$	52.17 52.30	3.62 3.40	15.22 15.40	-	1615	
1d	NO ₂	260	82	C ₁₂ H ₁₀ N ₄ O ₂	59.50 59.40	4.13 3.70	23.14 23.30	-	1630	

Table 1: Physica	l, elemental an	alysis, and	l spectral data	of hydrazones	1a-1d
------------------	-----------------	-------------	-----------------	---------------	-------

*:CDCl₃ **: (CD₃)₂SO

Table 2: Physical, elemental analysis, and spectral data of (1-aroyl-2-heterocyle) Hydrazines (4a-4c) and (1-acetyl-2-aroyl-heterocycle) hydrazines (5a-5d).

Compd	D	MD	Vield	Molecular	Analyses (%) Calc/Found			IR(KBr) cm ⁻¹			
No.		(°C)	(%)	Formula	С	Н	Ν	NH	CON	C=N	¹ H NMR (δ) ppm
4a	Н	196	63	C ₁₄ H ₁₁ N ₃ OS	62.45 62.40	4.09 3.70	15.61 15.40	3270	1650	1620	10.37 (s, 1H, deuteratable, N <u>H</u>), 8.05-7.28 (m, 9H, aromatic H)*
4a	CI	240	74	C ₁₄ H ₁₀ N ₃ OSCI	55.35 55.60	3.29 3.20	13.84 14.20	-	1680	1645	
4a	Br	244	66	C ₁₄ H ₁₀ N ₃ OSBr	48.28 48.50	2.81 3.00	12.07 12.40	3470	1652	1589	8.08-7.28 (m, 8H, aromatic H)**
4a	NO ₂	280	62	C ₁₄ H ₁₀ N ₄ O ₃ S	53.50 53.20	3.18 3.00	17.83 17.50	3480	1690	1605	
4b	CI	250	78	C ₁₆ H ₁₂ N ₃ OCI	64.50 64.30	4.03 4.50	14.12 14.20	3500	1650	1602	
4b	Br	235	70	C ₁₆ H ₁₂ N ₃ OBr	56.14 56.30	3.51 3.60	12.28 12.00	3430	1678	1635	
4b	NO ₂	205	78	C ₁₆ H ₁₂ N ₄ O ₃	62.34 62.10	3.90 3.50	18.81 18.50	3270	1640	1620	
4c	CI	268	67	C ₁₇ H ₁₄ N ₃ OCI	65.49 65.60	4.49 4.80	13.48 13.60	3430	1655	1590	8.05-7.10 (m, 9H, aromatic H), 2.68 (s, 3H, CH ₃)*
4c	Br	280	64	C ₁₇ H ₁₄ N ₃ OBr	57.30 57.70	3.93 4.10	11.80 11.70	3440	1668	1600	
4c	NO ₂	245	65	C ₁₇ H ₁₄ N ₄ O ₄	60.36 60.10	4.14 4.20	16.57 16.90	3470	1680	1610	
5a	Н	229	83	C ₁₆ H ₁₃ N ₃ O ₂ S	61.74 61.50	4.18 4.40	13.50 13.80	3400	1700 1690	1580	
5a	CI	225	83	C ₁₆ H ₁₂ N ₃ O ₂ SCI	55.57 55.60	3.47 3.70	12.17 12.00	3470	1702	1590 1685	
5a	Br	242	83	$C_{16}H_{12}N_3O_2SBr$	49.23 49.20	3.08 3.00	10.77 10.30	3390	1710 1690	1598	
5a	NO ₂	260	63	C ₁₆ H ₁₂ N ₄ O ₄ S	53.93 53.70	3.37 3.30	15.73 15.50	3330	1710 1690	1630	
5c	CI	251	75	C ₁₉ H ₁₆ N ₃ O ₂ CI	64.50 64.20	4.53 4.30	11.88 12.10	3420	1780 1685	1620	8.13-7.52 (m, 9H, aromatic H), 2.60 (s, 6H, 2CH ₃)**
5c	Br	200	63	C ₁₉ H ₁₆ N ₃ O ₂ Br	57.29 57.30	4.02 4.30	10.55 10.40	3320	1725 1690	1612	
5c	NO ₂	241	63	C ₁₉ H ₁₆ N ₄ O ₄	62.64 62.50	4.40 4.70	15.83 15.50	3335	1695 1670	1632	

*:CDCl₃, **: (CD₃)₂SO

hydrazide <u>4a</u> (R=H) followed by acetylation to <u>5a</u> (R=H) which was found to be identical with that obtained from the LTA oxidation of <u>1a</u> (R=H). The second product only showed infrared C=N absorption at 1575 cm⁻¹ and its combustion analysis agreed with the molecular formula $C_{14}H_9N_3S$ of the 3-phenyl-1,2,4-triazolo [3,4–<u>a</u>] 1,3-benzothiazole structure <u>2a</u> (R=H). The latter compound was also obtained form <u>5a</u> (R=H) through the loss of an acetic acid molecule by thermal cyclization in boiling phenol. LTA

oxidation of p-chlorobenzaldehyde 1,3-benzothiazol-2ylhydrazone (<u>1a</u>, R=C) gave <u>5a</u> (R=CI) which was identical to that indirectly obtained from <u>3a</u> and p-chlorobenzoylhydrazine followed by acetylation. Cyclization <u>5a</u> (R=CI) by heating in boiling phenol gave <u>2a</u> (R=CI). Surprisingly, LTA oxidation of p-bromobenzaldehyde and p-nitrobenzaldehyde 1,3-benzothiazol-2-ylhydrazones (<u>1a</u>, R=Br and NO₂) directly gave the corresponding 3-aryl-1,2,4-triazolo [3,4–<u>b</u>] 1,3-benzothiazoles (<u>2a</u>, R=Br, and NO₂). The

Compd P		MD	Method of	Molocular	Analys	es (%) Cal	c/Found	IR(KBr) cm ⁻¹		
No.	ĸ	(°C)	Cyclization	Formula	С	Н	Ν	C=N	¹ H NMR (δ) ppm	
2a	Н	158	A,B,F	$C_{14}H_9N_3S$	66.93 66.60	3.59 3.80	16.73 16.70	1575		
2a	OMe	161	С	C ₁₅ H ₁₁ N ₃ OS	64.06 64.40	3.91 3.60	14.95 14.70	1615		
2a	CI	204	A-C,F	C ₁₄ H ₈ N ₃ SCI	58.84 58.94	2.80 2.90	14.71 14.71	1600		
2a	Br	215	A-C,F	C ₁₄ H ₈ N ₃ SBr	50.91 50.60	2.42 2.80	12.73 12.40	1588		
2a	NO ₂	310	A-C,F	C ₁₄ H ₈ N ₄ O ₂ S	56.76 56.36	2.70 2.66	18.92 18.36	1595		
2b	H*	94	A-C	C ₁₆ H ₁₁ N ₃	78.37 78.10	4.49 4.10	17.14 17.50	1620		
2b	OMe	110	A-C	C ₁₇ H ₁₃ N ₃ O	74.18 74.11	4.73 4.87	15.28 14.93	1618		
2b	CI	200	A-E	C ₁₆ H ₁₀ N ₃ CI	68.69 63.30	3.58 3.70	15.03 15.00	1628	7.73-7.27** (m, 10H, aromatic H)	
2b	Br	198	A-E	C ₁₆ H ₁₀ N ₃ Br	59.26 58.90	3.09 3.10	12.96 12.80	1625	7.93-7.25** (m, 10H, aromatic H)	
2b	NO ₂	265	A-E	C ₁₆ H ₁₀ N ₄ O ₂	66.20 66.60	3.50 4.10	19.31 19.20	1635		
2c	Н	155	С	C ₁₇ H ₁₃ N ₃	78.76 78.55	5.02 5.16	16.22 16.34	1610		
2c	OMe	175	B,C	C ₁₈ H ₁₅ N ₃ O	74.74 74.72	5.19 5.02	14.53 14.65	1642		
2c	NMe ₂	285	B,C	C ₁₉ H ₁₈ N ₄	75.50 75.20	5.96 6.01	18.54 18.08	1615		
2c	CI	205	A-F	C ₁₇ H ₁₂ N ₃ CI	69.51 69.10	4.09 4.40	14.31 14.40	1648	7.93-7.28** (m, 9H, aromatic H), 2.66 (s, 3H, CH ₃)	
2c	NO ₂	298	A-F	C ₁₇ H ₁₂ N ₃ O ₂	67.11 67.23	3.95 3.95	18.42 18.36	1625	8.47-7.38*** (m, 9H, aromatic H), 2.57 (s, 3H, CH ₃)	
2d	Н	174	A-C	C ₁₂ H ₉ N ₃	73.85 73.50	4.62 4.30	21.53 21.70	1630		
2d	OMe	125	A-C	C ₁₃ H ₁₁ N ₃ O	69.33 64.00	4.89 5.40	18.67 18.50	1632		
2d	CI	198	A-D	C ₁₂ H ₈ N ₃ CI	62.75 62.80	3.49 3.50	18.30 18.32	1632		
2d	Br	200	A-D	C ₁₂ H ₈ N ₃ Br	52.55 52.20	2.92 2.62	15.33 15.70	1645		
2d	NO ₂	300	A-D	C ₁₂ H ₈ N ₄ O ₂	60.00 59.63	3.33 3.20	23.33 23.23	1615		
	Compd. No. 2a 2a 2a 2a 2a 2b 2b 2b 2b 2b 2b 2b 2b 2b 2b 2b 2b 2b	Compd. No.R2aH2aOMe2aCI2aBr2aNO22bH*2bCI2bBr2bCI2bRI2bCI2bOMe2bCI2bCI2bRr2bRr2bNO22cH2cNMe22cCI2cNMe22cCI2dNO22dH2dSr2dSr2dNO2	Compd. No.RMP (°C)2aH1582aOMe1612aCI2042aBr2152aNO23102bH*942bCI2002bCI2002bRr1102bCI2002bBr1982bNO22652cH1552cOMe1752cOMe2852cCI2052cNMe22852cCI2052cNMe31252dH1742dCI1982dH1252dCI1982dBr2002dNO2300	Compd. R MP (°C) Method of Cyclization 2a H 158 A,B,F 2a OMe 161 C 2a OMe 161 C 2a OMe 161 C 2a CI 204 A-C,F 2a Br 215 A-C,F 2a NO2 310 A-C,F 2b H* 94 A-C 2b OMe 110 A-C 2b CI 200 A-E 2b Rr 198 A-E 2b NO2 265 A-E 2c H 155 C 2c NMe2 285 B,C 2c NMe2 285 A-F 2c NO2 298 A-F 2c NO2 298 A-F 2c NO2 298 A-F 2d H 174 A-C	Compd. R MP (°C) Method of Cyclization Molecular Formula 2a H 158 A,B,F $C_{14}H_9N_3S$ 2a OMe 161 C $C_{15}H_{11}N_3OS$ 2a Cl 204 A-C,F $C_{14}H_8N_3SCI$ 2a Br 215 A-C,F $C_{14}H_8N_3SBr$ 2a Br 215 A-C,F $C_{14}H_8N_4O_2S$ 2b H* 94 A-C $C_{16}H_{11}N_3$ 2b DMe 110 A-C $C_{16}H_{10}N_3CI$ 2b Cl 200 A-E $C_{16}H_{10}N_3CI$ 2b Br 198 A-E $C_{16}H_{10}N_3CI$ 2b NO2 265 A-E $C_{16}H_{10}N_4O_2$ 2c H 155 C $C_{17}H_{13}N_3$ 2c OMe 175 B,C $C_{19}H_{16}N_4O_2$ 2c NMe2 285 B,C $C_{17}H_{12}N_3O_1$ 2c NMe2 298 A-F <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c } \hline \mbox{No.} & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$</td> <td>$\begin{array}{ c c c c c c c } \hline \mbox{Prime} & \mbox{Method f} \mbox{Cyclization} & \mbox{Molecular} \mbox{Formula} & \mbox{C} & \mbox{H} & \mbox{N} \\ \hline \begin{titrel} \mbox{L} \mbox$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c } \hline \mbox{No.} & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$ \begin{array}{ c c c c c c c } \hline \mbox{Prime} & \mbox{Method f} \mbox{Cyclization} & \mbox{Molecular} \mbox{Formula} & \mbox{C} & \mbox{H} & \mbox{N} \\ \hline \begin{titrel} \mbox{L} \mbox$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	

Table 3: Physical, elemental analysis, and spectral data of condensed 1,2,4-Triazolo-heterocycles (2a-2d).

*: Crystallized from benzene-petroleum,

**: CDCl₃,

***: (CD₃)₂SO

latter compounds were also obtained when <u>5a</u> (R=Br and NO₂) were cyclized by heating in boiling phenol. Hydrazones <u>2b</u>, <u>2c</u>, and <u>2d</u> derived from 2-hydrazinoquinoline, 2-hydrazinolepidine and 2-hydrazinopyridine respectively, underwent LTA oxidative cyclization to the corresponding 3-aryl-1,2,4-triazolo [4,3–<u>a</u>] azines (<u>2b–2d</u>); the corresponding acetyl hydrazine derivatives <u>5b–5d</u> have not been isolated. Indirect preparation of the latter compounds was only successful in the case of 1-acetyl-2-aroyl-1-(lepid-2yl) hydrazines (<u>5c</u>) when 2-chlorolepidine (<u>3c</u>) was fused with aroylhydrazines to give $\underline{4c}$ followed by acetylation. Heating of $\underline{5c}$ in boiling phenol gave the 3-aryl-1,2,4-triazolo [4,3–<u>a</u>] lepidines (<u>2c</u>) which were identical to those prepared by the LTA oxidation of the hydrazones <u>1c</u>. In contrast to 1-aroyl-2-(lepid-2-yl) hydrazines (<u>4c</u>), it was interesting to find out that boiling 1-aroyl-2-(quinol-2-yl) hydrazines (<u>ab</u>) with acetic acid-acetyl chloride mixture directly gave the 3-aryl-1,2,4-triazolo [4,3–<u>a</u>] quinolines <u>2b</u> and not the 1-acetyl-2-aroyl-1-(quinol-2-yl) hydrazines <u>5b</u>. All attempts to prepare 1-aroyl-2-(pyrid-2-yl) hydrazines

Journal of Islamic Academy of Sciences 3:4, 255-261, 1990

(<u>4d</u>) by reacting 2-chloropyridine (<u>3d</u>) with aroylhydrazines in aprotic solvents or by fusion were unsuccessful.

Oxidation of hydrazones derived from cyclic amidrazones with bromine has also been used for achieving the cyclization to the corresponding tiazolo-heterocycles (4, 9). Subjecting hydrazones <u>1a–1d</u> to oxidation with bromine in the presence of sodium carbonate at ambient temperature gave the corresponding 3-aryl-1,2,4-triazoloheterocycyles <u>2a–2d</u> in good yields. Smooth oxidative cyclization of hydrazones <u>1b–1d</u> has also been accomplished by heating with ethanolic ferric chloride solution as well as by oxidation with sodium hypochlorite in dioxane at ambient temperature.

Attempted catalytic dehydrogenative cyclization of the hydrazones <u>1a–1d</u> using 10% palladium-on-charcoal according to the method used in this laboratory (16,17) was only effective in the case of aldehyde (quinol-2-yl) hydrazones (<u>1b</u>) and lepid-2-yl) hydrazones (<u>1c</u>) but failed with the other hydrazones.

Judging the smoothness of the reaction, as well as the state of purity and yield of the products as criteria for evaluating the most suitable cyclizing method, we came to the conclusion that bromine and sodium hypochlorite are the most effective cyclizing reagents.

REFERENCES

1. Bicking JB : Derivatives of s-triazolo [4, 3-<u>a]</u> pyridine, US patent: 3,050,525, 1962; Chem Abstr, 58:1480, 1963.

2. Bower J, Doyle F : The preparation of fused systems. J Chem Soc, pp 727-732, 1957.

3. Butler RN, O'Sullivan P, Scott FL : The reactions of lead tetraacetate with substituted benzothiazolylhydrazones. J Chem Soc, C:2265-2268, 1971

4. Butler RN, O'Sullivan P, Scott FL : The reactions of substituted benzothiazol-2-ylhydrazones with bromine: A route to striazolo [3,4-<u>b</u>] benzothiazoles. J Chem Soc, C:1519-1523, 1972.

5. Daka KS, Mohan J, Chandha VK, Pujari HK : Heterocyclic system containing bridgehead atom. Reaction of 2-mercapto-s-triazoles with α -haloketones and with alkyl halides. Indian J Chem, 12:485-489, 1974; Chem Abstr, 136112, 1974.

6. Deshpande DS : Lead tetraacetate cyclization of some 2benzothiazole hydrazones. J Indian Chem Soc, 56:742-748, 1979; Chem Abstr: 92, 94313, 1980.

7. Deshpande DS : Synthesis of some substituted s-triazolo [3,4-<u>b</u>] benzothiazoles as potent antibacterials. Acta Cienc Indica (Ser) Chem, 313:867-878, 1980; Chem Abstr: 94, 65569, 1981.

8. Dreikorn BA, Kramer KE : s-Triazolo [4,3-<u>a</u>] quinolines for combating phytopathogenic organisms. Fr Demande: p 2, p 149, p 467, 1973; Chem Abstr: 79, 78814, 1973.

9. Gibson MS : The bromination of benzylidene 2-pyridylhydrazone. Tetrahedron, 19:1587-1589, 1963.

10. Kasary K, Sahar P : Studies in the field of pyridazine Compounds. II. Derivatives of [1,2,4] triazolo [4,3-<u>a</u>] pyridazine-3-carboxylic acid. Acta Chim Acad Sci Hung, p 103, pp 405-413, 1980; Chem Abstr: 94, 47248, 1981.

11. Kosary J, Kasztreiner E, Soti M : Pyrimido [1,2-<u>b</u>] 1,2,4triazolo [4,3-<u>f</u>] pyridazine, a novel ring system. Heterocyles, 20, 759-752, 1983; Chem Abstr: 99, 47248, 1983.

12. Morogues J, Vega A, Prieto J, Maraquez M, Roberts DJ : Potential anti-inflammatory agents. II. 7-Methyl-s-triazolo [4,3-<u>a</u>] pyridines. Farmaco Ed Sci, 31, 126-127, 1976; Chem Abstr: 84, 180138, 1976.

13. Murdoch R, Tully WR, Westood R : Synthesis of 1,2,4-triazoloquinazolines and limidazoquinazolinones. J Heterocycly Chem, 23:833-841, 1986.

14. Paget CJ Jr, Wikel JH : Plant protective triazolobenzaxazoles and triazolobenzothiazole. Ger Offen, 2, 250, 077, 1973; Chem Abstr: 79, 18721, 1973.

15. Paget CJ Jr, Wikel JH : s-triazolo [3,4-<u>b</u>] benzothiazles, Ger Offen 2, 509,843, 1975; Chem Abstr: 84, 44070, 1970.

16. Shaban MAE, Ali RS, El-Badry SM : The synthesis of 3-(aliditol-1-yl)-1,2,4-triazolo [3,4-<u>a</u>] phthalazines. Carbohydr Res, 95, 51-60, 1981.

17. Shaban MAE, Taha MAM : The synthesis of <u>C</u>-nucleoside precursors II: Synthesis and conformational analysis of 3-(pen-tahydroxypentyl)-6-phenyl-1,2,3-triazolo [3,4-<u>a</u>] phthalazines. Bul Chem Soc Jap, 62, 2701, 1989.

18. Shaban MAE, Nasr AZ : The synthesis of condensed 1,2,4-triazolo [3,4-z] heterocycles. Advan Heterocyc Chem (in press).

19. Trust RI, Albright JD : Substituted-6-phenyl-5,6,7,8tetrahydro-1,2,4-triazolo [4,3-<u>a</u>] pyridines, US Patent, 4, 244, 953, 1981; Chem Abstr: 94, 156942, 1981.

> Correspondence: Muhammed A. E. Shaban Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, EGYPT.