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SUMMARY: In this paper an analytic criterion for test function spaces of type K { Mp } to be a Montel space
are studied.
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1. INTRODUCTION

In the study of the theory of generalized functions

certain classes of function spaces known as test func-

tion spaces are discussed. For successful applications

it is important that these test function spaces should

satisfy, among other properties, the conditions of being

Montel spaces. So far various types of test functions

have been found to satisfy these conditions. Russian

mathematician Gelfand and his colleague Shilov has

studied a very general class of test functions. They call

these spaces K{Mp} spaces of test functions defined on

the real space éR with a certain set of weight functions

Mp(x). They found a sufficient condition on these

weight functions in order to make these spaces into

Montel spaces. It is our object to study this condition

more closely and try to find necessary and sufficient

conditions so that these K{Mp} spaces may be a Montel

space.

2. DEFINITIONS

The K{Mp} space Φ is defined by assigning a

sequence of functions Mp(x) satisfying the inequalities

1 ≤ M0 (x) ≤ M1 (x) ≤ ..., taking a finite or simultaneously

infinite values and continuous everywhere they are

finite.

By definition, the space K{Mp} consisting of all infi-

nitely differentiable functions φ(x) = φ(x1,...xn), for

which the products Mp(x) Dq φ (x), (q≤ p) are every-

where continuous and bounded in the whole space.The

norms are defined by the formulas

  φ p = supx Mp(x) Dq φ(x),

q≤ p

(p = 0,1,2...,).

Gelfand and Shilov (2) proved that the following

condition suffices for the K{Mp} space Φ of test func-

tions on Rn to be a Montel space.

3. PROPERTY (P)

(P) : Given p, there exists p'>p such that

lim Mp (x)
=0

x→ ∞  Mp' (x)

The following property is used in connection with

the above condition:
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4. PROPERTY (A)

A K {Mp} space Φ is said to have property (A) if

every bounded sequence which is regularly convergent

to zero is convergent to zero in the topology of Φ.

Now we have a

Theorem 1
If a K{Mp} space Φ is a Montel space then it has the

property (A).

Proof. Let Φ be a Montel space and let {φυ} be a

bounded sequence in Φ which is regularly convergent

to zero. Then {φυ} is regularly convergent to 0. Since Φ
is a metric space, {φυ} contains a convergent subse-

quence {φυr , r = 1,2.., }. Let the limit of {φυr} is the

topology of Φ be φ0. Hence, since, the topology of reg-

ular convergence is Hausdorff, and since by hypothesis

{φυr} is regularly convergent to zero, we have φ0 = 0.

Hence, the property (A) holds.

Conversely, let the property (A) hold. Let A ⊂ K {Mp}

be a closed bounded subset of Φ. We shall show that A

is compact. Let φυ ε A (υ = 1,2,...) be an arbitrarily

bounded sequence. It is sufficient to show that it con-

tains a convergent subsequence. Since {φυ 1} is

bounded, the function

are uniformly bounded. Hence, by Arzela's theorem a 

subsequence φ21, φ22 ...,for which 

converges uniformly x≤ 2. Continuing thus, we get a

bounded sequence φ11, φ22, φ33,..., which converges

uniformly together with all its derivatives to some func-

tion φ0 (x) in any bounded domain. Thus φυ converges

to the element φ0 in the topology of the K {Mp} space Φ.

This completes the proof of the theorem.

Now we tackle the question of finding a weaker con-

dition than (P) which hopefully will be necessary and

sufficient for the K {Mp} space Φ to be a Montel space.

First we consider the special case of K {Mp} spaces

on the real line satisfying the further restriction:

For each P, Mp (x) ≥ Mp (y) (x ≥ y ≥ 0 or x ≤ y ≤ 0).

Let us agree to call such a space a restricted K {Mp}

space.

5. PROPERTY (p1)

Given h>0, given a positive integer p, given a

sequence xυ ≥ 0, there exists p' ≥ p such that the

sequence

M
p’

(x
υ

+h)
(υ = 1,2,...) is unbounded.

M
p

(x
υ
)

It is clear that (P) implies (P1).

Theorem 2
If Φ is a restricted K {Mp} space, then properties

(P1) and (A) are equivalent. Hence Φ is a Montel space

if it satisfies property (P1).

Proof. Assume that (P1) holds and that (A) does not

hold. Then there exists Mp(x) and a sequence {ψυ}

which is bounded and regularly convergent to zero

such that for some k and for some δ>0,

supx {Mp (x) Dk ψυ (x): Xε ΙR} > δ.

Replace Dk ψυ by φυ. Since {φυ} is regularly conver-

gent to 0, we can find a sequence {xυ} tending either to

+ ∞ or to - ∞ such that

Mp (xυ) φυ (xυ)> δ.

Without loss of generality suppose that φυ (x)>0 and

that xυ → + ∞.

By boundedness there exists K > 0 such that

Mp (x) φυ (x) < K ( all x, all υ)

Mp (x) φ’υ (x) < K ( all x, all υ)

Choose h =
δ

By (P1), there exists p’ such that
2K

Mp (xυ+h)
is unbounded.

Mp (x
υ
)

If we can prove that {Mp (xυ) φυ (xυ + h) } is

bounded below away from zero it will follow that {Mp'

(xυ + h) φυ (xυ + h)} is an unbounded sequence in con-
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tradiction to hypothesis of boundedness in Φ of {φυ}.

Now  Mp (x) φυ (xυ + h) > Mp (xυ) φυ (xυ)

- Mp (xυ) φυ (xυ + h) - φυ (xυ)

> δ - Mp (xυ ) φ'υ (ξυ)  h (xυ ≤ ξυ ≤ xυ + h

> δ - Mp (ξυ ) φ'υ (ξυ) . h

(because Mp ( x ) is monotonic increasing)

> δ - δ  = δ
2     2

This completes the proof that property (P1) implies

property ( A ).

Conversely, assume that (P1) does not hold. Then

there exists h > 0, there exists a positive integer P and

without loss of generality

Let φυ(x) = aυ φ (x - xυ) where aυ is a constant yet

to be determined. Then for each k≥0, and for each q≥0,

the function Mq(x) Dk φυ (x) has support inside [xυ -

h, xυ + h] and attains its maximum at a point Yυ (k, q)

inside [xυ, xυ + h]. This is because each Mq (x)

increases with x and eachDk φυ (x) is symmetric

about xυ.

For each k≥0 and each υ

max Dk φυ(x)= aυ, AK, where

Ak > 0 is independent of υ.

It is clear that for all q, all υ, all k,

aυ Ak Mq (xυ)≤sup{Mq(x)Dkφυ(x)}≤aυAkMq(xυ+h) (2)
x

For each υ, choose aυ > 0 so that

aυ Mp (xυ) = 1 (3)

Then in view of (2), the sequence {φυ} fails to con-

verge in Φ.

In fact,

φυp = sup{Mp(x)Dk φυ ( x ): Xε IR , 0≤k≤p}

≥aυ Ao Mp (xυ) = Ao.

We have now that {φυ} is bounded in Φ. In fact, for

each k≥0 and each p'≥p,

sup{Mp' (x)Dk φυ (x)}≤ aυ AkMp' (xυ + h)   
x

≤ aυ AkMp(xυ).Kp
'= Ak.Kp'

using ( 1 ), ( 2 ) and ( 3 ).

Thus {φυ} is bounded and regularly convergent to

zero and shows that property (P1) implies property (A).

This completes the proof of the theorem.

Now the restriction that each Mp (x) should be

monotonic increasing as x → ∞. It suffices that for each

p, there exists xo such that Mp (x) should be increasing

for x≥xo. If the restriction of monotonicity is removed,

the theorem breaks down. For sufficiently pathological

K{Mp} spaces, property (P1) can hold and ( A ) can fail.

The pathology would seem to be characterized by

the presence of an infinite number of troughs of Mp(x)

becoming increasingly thinner and deeper.

The following counter-example typifies the situa-

tion.

6. COUNTER EXAMPLE 3.

The K{Mp} space Φ is such that all the Mp(x) are

identical with the continuous function M(x) defined as

follows:

(i) Mx = M(-x)

so that
M (x+h)

→ + ∞, as x → + ∞.
M(x)

Let φ(x) be a suitable C∞ - function on [0,1] such that,

φ(0)= 1, φ(1)= 0, 0≤φ(x)≤1 (0≤x≤1).

For each υ=1,2, ..., let ψυ(x) be defined as follows:

ψυ(x)= 0  (x≤υ -1).

= φ(υ -x), (υ -1<x< υ)

= 1, (υ ≤ x ≤ υ+  
1  

),
υ
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= φ[(x−(υ+  
1  

))], (υ+  
1  

< x< υ+  
2 

)
υ υ υ

= 0, (x≥+  
2 

).
υ

2
Let φυ (x)=e-υ ψυ (x).

We will show that {φυ} is a bounded sequence regu-

larly convergent to 0 which does not converge to 0 in

Φ.

Let ak = sup {Dk φ(x) : 0 ≤ x ≤ 1}.

Clearly {φυ} is regularly convergent to 0. Now we

show that {φυ} is bounded in Φ.

Consider φυ k = sup {M(x)Dk φυ (x): x ε IR  }.

We need only consider the range

υ - 1 ≤ x ≤ υ + 2
υ

For k=0 both ψυ(x) and M(x) achieve the maximum

in this range at x=υ. Hence

φυ= M(υ) φυ (υ) = a0 = 1.

As a by product we have proved that {φυ} does not

tend to 0 in Φ. We now estimate φυk (k ≥ 1).

In the range.
2

υ-1≤ x ≤ υ, M (x) Dk φυ (x)≤ M(υ) e-υ ak =ak

In the range,  υ + 
1

≤ x ≤ υ +
2  ,

υ                    υ

which tends to 0 as υ tends to infinity.

Thus φυk is bounded. Hence {φυ} is bounded

in Φ.

Thus according to the above counter example,

property (P1) is not sufficient for K{Mp} to be a Montel

space in the absence of the monotonivity condition. We

shall establish below that property (P1) is not a neces-

sary condition.

7. In fact the slightly weaker property (P2), which we

now define, fails to be necessary.

Property (P2).

Given ε > 0 and given P, there exists positive h<ε
such that for any sequence {xυ}, xυ → ∞ there exists

p'≥p such that

Mp’ (xυ + h) 
is unbounded as υ → ∞,

Mp (xυ)

Now if Φ is a restricted K {Mp} space then (P1), (P2)

and (P4) are seen below to be equivalent. In general,

(P1) implies (P2), although it is not easy to construct

examples demonstrating their non-equivalence. The

following condition (P4) is weaker still, and turns out to

be necessary in order that Φ be a Montel space.

8. PROPERTY ( P4 )

For all h > 0, for any p and for any sequence {xυ},

xυ→ ∞ there exists p'≥p such that

Theorem 4. If Φ is a K{Mp} space satisfiying condi-

tion (A), then property (P4) holds.

Proof. Suppose (P4) does not hold. Then there

exists h>0, P>0 and a sequence xυ → ∞ such that for

any p'≥p, there exists Kp' > 0 such that

Let φυ(x) = Cυ φ(x - xυ-h ) where Cυ>0 is a constant

to be determined presently.

Let Ak = sup Dk φ(x).
x

Then for any k≥0, any υ and p'>p,

sup {Mp' (x)Dk φ(x) ≤ Kp'. Ak. Cυ Mp (xυ + h),

A0 Cυ Mp (xυ + h) ≤ sup {Mp (x).φυ (x)}.
x

Choose Cυ so that Cυ Mp (xυ + h) = 1 for all υ.

Then {φυ} is bounded regularly convergent to 0, but

failing to converge in Φ to 0. Thus property (A) breaks

down.
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9. COUNTER EXAMPLE 5

To show that (P2) is not necessary for K{Mp} to be a

Montel space. The K{Mp} space Φ is such that all the

Mp(x) are identical with the continuous function M(x)

defined as follows:

(i) M(x) = M(-x).

(ii) Except on the closed interval

[n - hn, n + hn] (n=1, 2 ... )

(hn ≥ 0, hn → 0),

2
M(x) = ex .
It is to verify that the property (P2) breaks down. In

fact, for every prescribed h<ε, we can choose xυ +h =

υ,  since  hυ→0,  xυ falls outside [υ-hυ, υ+hυ] for suffi -

xυ 
2. 

ciently large υ (say υ ≥ N and Mp (xυ)e
-2

On the other  hand,  for  hυ = 1  e-2υ     the topology 
2

determined by Mp (x) is the same  as  that  determined 
2

by Np (x) = ex (all p).

This will follow from the theorem given below. This

implies that the space Φ statisfies property (A) and

hence Φ is a Montel space.

Let Φ1 = K{Np} since Np(x) ≥ Mp(x) it follows that

Φ1⊆ Φ.

To prove that the two topologies are the same it is

sufficient to show that Φ1=Φ since both are complete

metrizable spaces and the closed graph theorem

holds.

Theorem 6. Let Φ = K{Mp} and Φ1= K{Np} where

Mp(x) ≤ Np(x) for each p. Given Np, if there exists Mq(x)

and there exists m such that Np(x).g (x,m,q) is bounded

as a function of x, where

Now before giving the proof, let us look at the

counter example given above. Choose m=0.

Case 1

Let x ε [n - hn, n + hn] for any n.

Then

g(x)≤h(x) (taking y = 0).

and h(x). Np(x) = 1.

Hence g (x). Np (x) is bounded.

Case II

n - hn ≤ x ≤ n + hn.

Choose y = n + hn.

≤ 2 hn + e-(n+hn)2, since h(u) ≤ 1

Hence g(x) 2hn + e-(n+hn)2.

2
If we put hn =   1 e-2n ,

2
2

then g(x) ≤ 2e-(n+hn), so that Np(x).g(x) ≤ 2.

Thus the above example satisfies the conditions of

the theorem.

Proof of the theorem 6.

Let φεΦ. To prove that φεΦ1, it is enough to show

that for each p, Np(x).φ(x) is bounded as a function of x.

We will show that for all x,

sup {Mq(y) Dk φ(y) :−∞ < y < ∞, 0 ≤ k ≤ m+1}

≥
φ(x) (1)

g(x)
Using Taylor’s theorem we can write

since φ(x)ε Φ,

φ(r) (y)≤φ m.h ( y ), all  y (3)

where φ m = L.H.S. of (1).

From ( 2 ) and ( 3 ) we obtain
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= g(x) . φ m

i.e.
φ(x)  

≤ φ m (4)

g(x)

Hence (1) and (4) are the same.

Hence by the given condition

Np ( x ), ½φ ( x )½ ≤ φ m . Np ( x ) . g ( x )

which is bounded.

Hence φ ( x )ε Φ.

This is the proof of the theorem.
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