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SUMMARY: The motion of robotic manipulators is controlled by actuators driving the joints of the manip-
ulator. The actuators can be electrical, hydraulic or pneumatic. A brief account is given of the different types
of actuators. The main issues regarding the control of robotic manipulators are summarized. Also, a selective
literature survey of the topic is given.

Key Words: Link, manipulator, robot.

Engineering

INTRODUCTION

The motion of robotic manipulators is controlled by

actuators that drive the joints of the manipulator. The

actuators can be electrical, hydraulic or pneumatic. In

the following sections, we give a brief account of the

different types of actuators and we summarize the main

issues regarding the control of robotic manipulators.

ELECTRICAL ACTUATORS

The most widely used electrical actuators are step-

per motors and DC motors. The DC motor has two wire

windings; one wrapped around the rotating armature

(armature circuit) and the other wrapped around a fixed

rotor (field circuit) that produces a steady magnetic

field. The motion of the motor can be controlled through

either the current in the armature winding (armature

control) or the current in the field winding (field control).

Figure 1 shows the equivalent circuit for a DC motor.

The motor torque Tm is related to the armature cur-

rent Ia and field current If by

Tm = Kla If
where K is a constant.

In armature control, the field current If is kept con-

stant and Tm is controlled by varying the armature cur-

rent Ia. This type of control is more popular since it

allows the speed to vary in a wider range than in the

case of field control, where Ia kept constant and Tm is

varied by varying If.

A stepper motor is a DC motor that accepts a pulse

or digital input and rotates in discrete steps. It is used

as a positioning device where the shaft angle can be

positioned at one of a finite number of pre-specified

discrete angles. With the increasing use of digital com-

puters in robotic control, stepper motors are becoming

increasingly popular, although their torque output is

rather limited.

HYDRAULIC ACTUATORS

Hydraulic actuators, pump an incompressible fluid

and use the resulting pressure to drive a mechanical

load. Figure 2 shows an example of a hydraulic actua-

tor. In the shown system, the pump produces a pres-

sure differential around the piston by controlling the

direction of the flow, causing the piston to move in the

desired direction.
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Hydraulic actuators are more common in applica-

tions requiring high power. Their main disadvantage is

that they exhibit highly nonlinear behavior due to the

compressibility of the fluid and due to the leakage

losses. A linear model is possible only under restricted

conditions. Some advantages of hydraulic actuators, in

addition to the high power capability, are their higher

accuracy, better frequency response, smooth perform-

ance at low speeds as well as their self-cooling nature.

PNEUMATIC ACTUATORS

In pneumatic actuators, a compressible fluid (air) is

used to drive a piston. Their main advantage is simplic-

ity and thus they are ideal for grippers. Other advan-

tages are high speed, low cost, simple control and

cleanness. Their main disadvantage is time delay, due

to the compressibility of the fluid. The propagation

delay in a pneumatic system is about four times greater

than in a hydraulic system.

STATE-SPACE REPRESENTATION OF DYNAMIC

EQUATIONS FOR A ROBOT MANIPULATOR

The dynamic equations of a robot manipulator are

differential equations in which time appears as an inde-

pendent variable. These equations can be represented

in the form of a vector, a first-order differential equation

of the form.

x = f (x(t), u(t))             (A2)

where x is a state vector, u(t) is an input to the system,

and f is a differentiable, vector-valued function.

For an n-jointed serial link, x is a 2n-dimensional

vector whose components are positions and velocities

of the joints. In general, the function f is highly non-

linear and cannot be easily solved in closed form.

Instead, digital computer simulation is used. This is

accomplished by approximating Eq. (A2) by a vector, a

difference equation of the form

x ((k+1)T) = g (x(kT), u(kT))                       (A3)

where T is the sampling period and g is a vector-valued

function related to f.

Another approach is to linearize Eq. (A2). This can

be accomplished by using perturbation methods or by

using feedback and/or feed forward loops (1). The

resulting linearized equation has the for

= A x (t) + B u (t)               (A4)

y (t) = C x (t)             (A5)

where A, B and C are matrices and y(t) is the output

vector, usually representing the position and orienta-

tion of the end-effector.

Having a linear model, all linear control methods

Figure 1: Separately excited DC motor.
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can be used. In particular, the stability and controllabil-

ity of the model can be studied. The linear model in Eq.

(A4) can also be discretized for digital computer simu-

lation. The resulting linear difference equation takes

the form

x ((k+1)T) = A x (kT) + B u (kT) (A6)

where A and B are matrices. Digital control methods

can be used to study Eq. (A6)

POSITIONAL CONTROL

The goal of robot control is to move the end-effector

according to the requirements of the task being per-

formed by the robotic manipulator. The simplest

requirement is to move the end-effector from its initial

position to a certain desired position without imposing

any constraint on the path that the end-effector traces

during its motion. When path constraints and/or other

constraints are imposed, the problem becomes

involved. A massive amount of literature is devoted to

the solution of the constrained path problem. Trajectory

planning, minimum-time path tracking, minimum-

energy path planning, collision-free path planning, col-

lision-avoidance path planning are but examples of

such cases. A good introduction and survey of this

problem is presented in (2).

Consider an n-joint manipulator and let y(t) be a

vector representing the position and orientation, in

Cartesian coordinates, of the end-effector. Also, let

xJ(t) be the position of the jth joint in joint coordinates.

Then,

y (t) = f (x1(t), x2(t),....,xn(t))           A(7)

for some vector-valued function f. In general, f is highly

nonlinear. A path given in terms of the position of the

end-effector can be converted into a trajectory traced

by the joints by inverting the function f. For example, to

move the end-effector from position y0 at time to to

position y1 at time t1, we need to move the jth joint from

position xJ(to) to xJ(t1),

where

y0 = f (x1(t0), ...,xJ(t0),....,xn(t0))

and

y1 = f(x1(t1), ...,xJ(t1),....,xn(t1))

or using the inverse f(-1), we can write

(x1(t0),...,xn(t0)) = f(-1) (y0)

and

(x1(t1),...,xn(t1)) = f(-1) (y1)

In general, the inverse f (-1) is not unique. However,

any such value will do unless further restrictions are

imposed.
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Figure 2: A hydraulic actuator.
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In many cases, the end-effector is required to move

from an initial position to a final position along a pre-

scribed path. In this case, it is not enough to know the

initial and final position of the joints. Rather, intermedi-

ate points are also important. One way to track the end-

effector along the prescribed path is to approximate the

path by piece-wise linear segments and to move the

end-effector between the end-points of these seg-

ments. Using spline functions interpolation instead of

linear pieces results in a smoother motion.

Constraints on other variables like joint speeds,

accelerations and torques can be imposed. Also, time

and energy constraints are popular. If the works space

contains other moving or stationary objects, then only

collision-free paths are allowed and collision-avoidance

is needed.

The constrained-path tracking problems are difficult

to solve in general. Many simplifying assumptions were

used in the literature in order to make the problem

tractable. In particular, either the Coriolis and centrifu-

gal terms in the dynamic equations are ignored, or

some of the constraints are ignored or both (2).

SELECTED LITERATURE SURVEY

There exists massive amounts of publications on

robotic control, and it is not possible to survey all rele-

vant literature within the scope of this work. Therefore,

we here present a selected list of literature on the

topics of interest.

Point-to-point control of robotic manipulators was

studied by Paul et al (3). Whitney (4) suggested a

method for smooth point-to-point control of robotic

manipulators by imposing speed constraints at the

transient points along the path. The application of

adaptive control methods to robotic control was exten-

sively investigated (5-9). Artificial intelligence methods

were also applied for the learning control of robots, par-

ticularly for mobile autonomous robots (10-14). Con-

strained-path tracking poses the most interesting of

problems.

Time-optimal and energy-optimal path planning

were studied by several authors (15-20). Collision-free

path planning was investigated just as widely (21-26).

Much effort went into devising efficient computational

methods as well as designing hardware architectures

(27-40) due to their relevance for the real-time control

of robots.

A very interesting recent trend in robotic research is

the application of artificial neural network algorithms for

the study of the inverse kinetic equations, path tracking

and control. The highly nonlinear nature of the dynamic

equations of robotic manipulators make it plausible that

neural network algorithms be used (41-49). Another

interesting trend is the application of fuzzy logic to the

learning control of robots (50).

CONCLUDING REMARKS

It is clear that the dividing line between an ordinary

machine and the robot goes through the controller. It is

perhaps not surprising that the single most costly item

in a robotic system is the controller itself. It is therefore

anticipated that significant developments in the area of

robotic controls will be heralded in the years ahead,

parallel with the developments on computers.
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