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INTRODUCTION
Oral diseases are the most preva-
lent chronic infections in the world 
(1); in most cases tooth decay and 
periodontitis are reasons for that 
(2, 3). Most of the oral disorders are 
bacterial biofilm driven. Biofilm 
formation is a natural occurring 
process in the oral cavity and so 
far more than 700 different bacte-

ria have been shown to cooperate in oral microbial communities (4). In sessile microbial commu-
nities, the cells are embedded in a matrix of self-secreted polymeric substances, such as DNA, 
proteins or polysaccharides which forms a diffusion barrier against antimicrobial substances, pre-
dation and host immune response (5), and adapt metabolic activity to the biofilm lifecycle. As a 
consequence, antibiotic resistance may increase by several hundred folds and renders drug treat-
ment often ineffective (6, 7).

These days, the use of copper as an antibacterial compound has gained increasing attention (8-
13), e.g. copper and copper alloys have been registered as the first solid antimicrobial material by 
U.S. Environmental Protection Agency in 2010 (8). Several mechanisms of antibacterial actions of 
copper ions have been proposed: a) formation of hydroxyl radicals (14), b) oxidative crosslinking of 
thiol residues in proteins (8) and c) competition between copper- and other metal ions for protein 
binding sites (15, 16).

The use of calcium hydroxide as a disinfectant agent in dentistry was introduced in the 1920 by 
B.W. Hermann (17). Since then, it has become one of the major antiseptic preparations in endodon-
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Cupral® treatment of biofilms
Cupral® was diluted 1:4 (v/v; referred to as C4 in the follow-
ing), 1:15 (v/v referred to as C15 in the following) and 1:50 
(v/v; referred to as C50 in the following) with ddH2O to give 
the test suspensions. Titanium disks with attached biofilms 
were transferred to petri-dishes and submerged in the three 
different Cupral® dilutions for 24h at 37 °C. As controls, 
biofilms were incubated in Dulbecco’s phosphate buffered 
saline (negative control, Biochrom GmbH, Berlin, Germany) 
and 0.2% CHX solution (positive control; Meridol med 0.2% 
CHX, CP GABA, Hamburg, Germany). After the incubation 
step, the biofilms were washed twice by gentle immersion 
in ddH2O to rinse off any attached solid Cupral® components. 
Cupral® supernatants from the petri-dishes were subjected 
to bacterial growth evaluation by plating 100 µl suspension 
on BHI agar plates followed by an incubation step at 37 °C for 
at least 24 h.

Evaluation of microbial viability in biofilms and super-
natants
Bacteria were stained live/dead (BacLight® Bacterial Viability 
Kit; Life Technologies, Carlsbad, USA) with the fluorescence 
dyes Syto9 and propidium iodide (PI). Both dyes were mixed 
by equal volumes and diluted 1:1000 in PBS. Biofilms were 
incubated in the staining solution for 30 min in the dark, 
washed in PBS and subsequently fixed in 2.5 % (v/v) glutar-
dialdehyde. In short, Syto9 passes bacterial membranes by 
diffusion and intercalates into genomic DNA. PI instead, can-
not penetrate intact bacterial membranes. If cell membrane 
integrity is impaired, PI intercalates into genomic DNA and 
displaces SYTO9. Using fluorescence microscopic examina-
tion, both cell vitality states can be distinguished: vital cells 
(membrane-intact) appear green fluorescent, non-vital cells 
(membrane-impaired) red fluorescent. Biofilms were ana-
lyzed by Confocal Laser Scanning Microscopy (CLSM; Leica 
SP2, Wetzlar, Germany). z-stack images (10x magnification, 3 
µm step size) were acquired at three randomized positions 
(center, up, down) on an imaginary line through the center of 
the titanium specimen.

tics. In aqueous formulations Ca(OH)2 dissociates into calcium 
ions and hydroxyl ions: Ca(OH)2->Ca2++2OH-

The release of hydroxide ions in aqueous solutions generates 
a strong alkaline (micro-) environment; saturated Ca(OH)2 so-
lution has a pH of 12.4 (18). The strong alkaline environment 
induces DNA strand separation also as proteins undergo con-
formational changes due to deprotonation of acidic residues 
(19). In both cases, biomolecules are denatured and lose their 
biological function. Limited solubility of Ca(OH)2 in water of 
1.7 g/l (20) causes a slow and gradual ions release of saturated 
formulations (21) and suspensions are thus suited to be ap-
plied as interappointment dressings (22-24). Also, its activity 
against biofilms is reported to be limited (25, 26). 

The germicidal efficacy of the medicinal product Cupral® 
is based on combined bactericidal activity of copper ions/
complexes and its strong alkalinization potential through re-
lease of hydroxide ions from Ca(OH)2 and Cu(OH)2. Although 
Cupral® is used in endodontics since more than a decade and 
has proved to be effective, only a few studies have analyzed its 
biocidal potential in more detail (27) and studies targeting effi-
cacy against oral biofilm formers are so far missing. Therefore, 
the aim of this study was to evaluate the efficacy of Cupral®® 
against biofilms of the oral commensal species Aggregatibac-
ter actinomycetemcomitans, Streptococcus oralis and Strepto-
coccus gordonii at different maturation stages and substance 
concentrations.

MATERIALS AND METHODS
Ethical approval for the current study was given by the local 
ethics committee (No. 4348, Hannover Medical School, Ger-
many).

Bacterial strains and culture conditions
The bacterial strains Aggregatibacter actinomycetemcomi-
tans (A. ac.) DSM 1123, Streptococcus oralis (S. oralis) DSM 
20627 and Streptococcus gordonii (S. gordonii) 20568 were 
acquired from the German Collection of Microorganisms and 
Cell Cultures (DSMZ). The bacteria were routinely propagated 
in Brain Heart Infusion (BHI) medium at 37 °C both under aer-
obic (streptococci) and anaerobic conditions (A. ac.). Precul-
tures were grown overnight (streptococci) or for 72 h (A.ac.) 
under agitation.

Biofilm formation und dynamic growth conditions
Biofilms were grown on titanium (grade 4) specimens as they 
were used in pre-studies as good biofilm formers (28, 29). Th-
ese were disc-shaped, had a height of 1.8 mm and were 12 mm 
in diameter. Specimens were glued to glass cover slips using 
Silagum Light (DMG, Hamburg, Germany) which were subse-
quently placed in a glass staining-rack (Fig. 1). Precultures were 
diluted to an optical density (OD600) of 0.03 and were used for 
inoculation of 1.5 l Brain Heart Infusion medium (BHI; Oxoid, 
Hampshire, UK). The racks with fixed titanium samples were 
immersed in the bacterial suspension and cultivated at 37 °C 
under continuous stirring at 200 rpm using a magnetic stirrer 
system (Cimarec™ i Compact; Thermo Fisher, Waltham, USA). 
Culture medium was changed every 48 h, where applicable. 
Experiments were performed in triplicate as independent bi-
ological replicates.

Figure 1. Technical set-up to induce biofilm formation on titanium 
specimens. Titanium disks are glued to microscopic slides and placed 
in glass staining rack before immersion in nutrient broth and cultiva-
tion for 1 to 5 days
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Remaining cell agglomerates on the surfaces were only ob-
served for C50 treatment (Fig. 2 lower box-plot); CHX treat-
ment resulted in no observable biofilm detachment. CHX 
treatment resulted in a lower cell damage rate compared to 
C50 treatment. However this difference was not statistically 
relevant. C4 and C15 solutions were not considered in the sta-
tistical analysis at this point, due to lack of data through de-
tachment of biofilms from the surfaces.

Streptococcus oralis
Biofilm formation throughout the biological replicates was 
reproducible; however with increasing biofilm maturation 
state, the percentage of membrane compromised cells in-
creased. All tested Cupral® suspensions were highly effective 
against attached biofilms at all maturation stages. The Cupral® 
suspensions C4, C15 and C50 almost completely detached 
biofilms from the surfaces, with a significantly higher efficacy 
compared to CHX treated samples (P<0.001 for C4, C15 and 
C50). However, after C15 and C50 treatment of two days old 
biofilms, minor bacterial agglomerates remained attached to 
the surfaces (Fig. 3 upper box-plot).

Quantification of the antibacterial effect of Cupral® treat-
ment
3D reconstructions of biofilms were processed from z-stack 
images using the IMARES (Version 5.0; Bitplane AG, Zürich Sch-
weiz) Software package and spatial parameters of the micro-
bial agglomerates were calculated. A minimal intensity value 
of 12.52 was preset to compensate for background fluores-
cence by unspecific attachment of Syto9 to Ca(OH)2 particles. 
Based on the volume of red fluorescent (non-vital) and green 
fluorescent (vital) cells, a live/dead ratio was created for each z-
stack image. Mean biofilm height was calculated from biovol-
ume and size of picture section and expressed as percentage 
ratio relative to the untreated biofilm control. The following 
outcomes were regarded as antibacterial a) biofilm detach-
ment from the surface due to chemically-induced degradation 
and b) increased percentage of membrane impaired (dead) 
cells within treated biofilms compared to untreated controls.

Statistical analysis
All statistical analysis was performed using the SPSS statistical 
software package, version 24.0 (IBM Coorperation, Armonk, 
USA). The correlations between biofilm height and treatment 
procedure, and cell vitality and treatment procedure were an-
alyzed using the Kruskal-Wallis omnibus test. The experimen-
tal results were evaluated using the following null hypotheses: 
“Distribution of relative biofilm height is the same across all 
categories of treatment” and “Distribution of percentage avital 
cells is the same across all categories of treatment” with post-
hoc group comparison. Significance values were adjusted by 
Bonferroni correction for multiple tests; a P-value<0.05 was 
regarded as statistically significant.

RESULTS

Streptococcus gordonii
The biofilm formation on the titanium specimen surfaces was 
reproducible throughout the independent biological repli-
cates. The suspensions C4 and C15 detached microbiologi-
cal agglomerates from the surfaces the most effectively. C50 
showed the lowest biofilm detachment potential. Biofilm de-
tachment was generally reduced on day 3 old biofilms (Fig. 2a 
upper box-plot). The differences in biofilm height were statisti-
cal significant between the different treatment categories: C4-
CHX (P<0.001), C15-CHX (P<0.001) and C50-CHX (P=0.03). No 
statistical significance was observed, when comparing relative 
biofilm heights pairwise for the different biofilm maturation 
stages and treatment regimes. The supernatants of Cupral® 
treated biofilm preparations were analyzed for viable plank-
tonic cells. For C15 and C50 treatments, no viable cells were 
detected by cultivation on solid nutrient agar. For C4 prepa-
rations no colony formation was detected, however the high 
content of solid Ca(OH)2 particles aggravated clear bacterial 
colony detection.

CHX treated biofilms reproducibly showed an increased bio-
volume compared to Cupral® treated samples. The amount of 
biofilm on the surface was at least two fold higher for the mat-
uration stages day 1, day 2, day 3 and day 5 compared to the 
untreated controls. Only for day 4 old biofilms, CHX treatment 
resulted in a 20% reduction of biovolume.

Figure 2. Diagrams depict the effect of Cupral treatment on biofilm 
height and cell survival of S. gordonii biofilms at different maturation 
stages; upper box-plot: Change of mean biofilm height compared to 
the untreated control in response to Cupral treatment for 24 h; lower 
box-plot: Relative proportion of dead cells within biofilms after 24 h 
incubation in Cupral suspension
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per box-plot). Again, CHX treatment resulted in minor or no 
biofilm detachment. The difference in the percentage of dead 
cells for C50 treatment and CHX treatment was not statistically 
significant (Fig. 4 lower box-plot). 

DISCUSSION
On a medical perspective, biofilm treatment becomes increas-
ingly challenging at later maturation stages, as biofilm architec-
ture has completely evolved and offers strong protection from 
external threats (30). Therefore, the antiseptic effect of Cupral® 
was evaluated at various biological conditions in vitro, to deter-
mine its efficacy against biofilms at different maturation stages 
and the effective concentration window. For a realistic test 
procedure, biofilms were prepared in a way that they morpho-
logically resembled those found in the oral cavity. Flow cham-
ber models are widely accepted for this purpose (29, 31-33) as 
fluid flow is considered to have substantial influence on (oral) 
biofilm formation processes. The underlying mass transport is 
a key driver for nutrient transport and waste removal processes 
and an essential influencing factor for microbial growth in the 

Bacterial cells in the supernatants of Cupral® treated biofilms 
were not replication-competent/viable on solid nutrient 
medium - no colony formation was detected. For the C4 sus-
pension undissolved Ca(OH)2 particles, equivalent in size to 
bacterial colonies, complicated visual inspection. CHX treat-
ment induced membrane damage in 57-94 % of biofilm cells 
(Fig. 3 lower box-plot). With exception for 2 d old biofilms, 
all Cupral® suspensions completely detached biofilms from 
surfaces. Remaining cells after Cupral® treatment showed an 
overall viability <1 %, as assessed by CLSM analysis.

Aggregatibacter actinomycetemcomitans
Biofilm formation on specimen surfaces varied between the 
three biological replicates. Either biofilm detachment in late 
biofilm maturation stages (day 4 and 5) or delayed onset of 
biofilm formation was observed and the anti-biofilm effect 
could not be analyzed as biological triplicates for all biofilm 
maturation stages. However, C4 and C15 treatment resulted 
in complete detachment of biofilms at all tested maturation 
stages, whereas cell agglomerates remained on the surfaces 
after C50 treatment of day 2, 3 and 4 old biofilms (Fig. 4 up-

Figure 3. Diagrams depict the effect of Cupral treatment on biofilm 
height and cell survival of S. oralis biofilms at different maturation 
stages; upper box-plot: Change of mean biofilm height compared to 
the untreated control in response to Cupral treatment for 24h; lower 
box-plot: Relative proportion of dead cells within biofilms after 24 h 
incubation in Cupral suspension
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ment durations were either in the range of several minutes 
(42-44) or considerably exceeded 24 h (42). It is likely that in-
creased biovolume is a stress-related reaction. We observed 
that it was highest for mature streptococcal biofilms at an 
age of day 3 and at longer time interval. Biofilm formation is a 
multi-stage process (5, 45) ending up with a mature multi-lay-
ered bacterial community. Major growth limiting step is the 
nutrient supply and accumulation of metabolic waste prod-
ucts in the lower part of the biofilm. In this situation, bacterial 
metabolic activity in deeper biofilm layers can be reduced 
(46, 47). As for both streptococci and A. actinomycetemcomi-
tans the highest biovolumes were observed between day 3 
and day 5, CHX treatment may have targeted a completely 
evolved microbial community. According to Hoffman et al. 
(48) a biomass increase may be triggered by a stress related 
reaction to antimicrobials. It is, therefore, can be concluded 
that massive biomass increase may be due to a stress-related 
response of bacteria in deeper biofilms layers. Those were 
better protected from CHX exposure and may have triggered 
massive EPS production. However, due to long treatment du-
ration, bacteria have been killed at a later time point during 
CHX exposure which is in accordance with the low cell sur-
vival rate.

CONCLUSION
In this study we demonstrated the antiseptic efficacy of Cupral® 
dressing on in vitro formed biofilms of oral commensals. The 
disinfection capacity, i.e. rate of bacterial killing, of Cupral® was 
comparable to CHX. However, disintegration of biofilm struc-
tures, i.e. removal of extrapolymeric substances resulting from 
biofilm formation, was only observed after Cupral® treatment. 
Based on the experimental results, the application of Cupral® 
solutions as antibacterial rinsing and endodontic irrigation so-
lutions seems to be a promising approach to fight pathogenic 
oral biofilms and resulting infections.
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