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(3R)-5,6,7-trihydroxy-3-isopropyl-3-methylisochroman-1-one reduces 
lipoteichoic acid-induced damage in rat cardiomyoblast cells

Introduction

Infective endocarditis (IE) is the infection of the endocar-
dial surface of the heart characterized by bacteria entering the 
bloodstream and settling in the heart lining, heart valve, or blood 
vessel, resulting in cardiac complications and embolic events (1, 
2). IE is usually caused by Streptococcus sanguinis. However, 
little is known about the exact molecular mechanisms causing 
IE (3, 4). Current therapies include antibiotic coverage, vasopres-
sors, and early surgery; unfortunately, there are few effective 
treatments available for patients with IE (2, 5, 6). Therefore, it is 
important to search for novel therapeutic strategies to treat IE.

Lipoteichoic acid (LTA) is a major component of Gram-posi-
tive bacteria cell membrane; it is well-known for the induction of 
inflammatory responses (7). LTA activates cardiomyocytes, re-
sulting in an increased secretion of proinflammatory cytokines, 
including interleukin (IL)-1β, IL-12, tumor necrosis factor alpha 

(TNFα), and nitric oxide, by the phosphorylation of nuclear factor-
κB (NF-κB) (8). The inflammatory factor over-production causes 
cell damage, resulting in intracellular toxic events by increas-
ing the permeability of mitochondrial membrane, releasing cy-
tochrome-c, activating caspase-related apoptotic proteins, and 
subsequently causing DNA damage and cell death (9).

Proinflammatory cytokines dramatically increase in IE. Some 
of these cytokines can stimulate oxidant production in the myo-
cardium, with subsequent peroxidative damage to macromol-
ecules with biological activities. Oxidative stress has been con-
firmed to play an important role in the progression of IE (10).

Supplementation of exogenous antioxidants could alleviate 
the oxidative damage, and different antioxidants have been used 
to effectively treat some disorders caused by oxidative stress 
(11-13). (3R)-5,6,7-trihydroxy-3-isopropyl-3-methylisochroman-
1-one (TIM) is a novel compound isolated from the plant Alpinia 
katsumadai Hayata with neuroprotective effects through inhibit-
ing oxidative stress (14). Moreover, in our preliminary work, TIM 
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was found to regulate nitric oxide synthase expression and in-
hibit nitric oxide production. This study aimed to elucidate the 
protective effect of TIM against LTA-induced inflammatory re-
sponse and oxidative stress in cardiomyoblasts.

Methods

Materials 
H9c2 cardiomyoblast cell line was purchased from Shanghai 

Cell Bank (Shanghai, China). LTA was purchased from National 
Institutes for Food and Drug Control (Beijing, China). Fetal bovine 
serum (FBS) and Dulbecco’s Modified Eagle’s medium (DMEM) 
were purchased from Gibco BRL (Gaithersburg, USA). Cas-
pase-3/9 activity assay kits and 3-(4,5-dimethylthiazol)-2,5-diphe-
nyltetrazolium-bromid (MTT) were purchased from Sigma-Aldrich 
(St. Louis, USA). MDA, GSH, SOD, IL-1β, IL-12, and TNFα assay kits 
were purchased from Jiancheng Biological Engineering (Nanjing, 
China). Cytochrome-c immunoassay kit was purchased from R&D 
systems (Minneapolis, USA). 5,5’,6,6’-tetrachloro-1,1’,3,3’-tetra-
ethylbenzimidazolylcarbocyanine iodide (JC-1) and 2’,7’-dichloro-
fluorescin diacetate (DCFH-DA) were purchased from Molecular 
Probes (CA, USA). Gamma H2AX (γH2AX) antibody was purchased 
from BioLegend (San Diego, USA). Real-time PCR reagents were 
purchased from Thermo Fisher (Waltham, MA, USA). TIM was 
isolated and identified by Prof. Lin from Shantou University Medi-
cal College (Shantou, China) (14). All solvents and chemicals used 
in this study were of analytical grade and purchased from Sino-
pharm Chemical Reagent Co. Ltd. (Shanghai, China). LTA and TIM 
were dissolved in DMSO in the in vitro experiments.

Cell culture and treatment
H9c2 cells were cultured in DMEM medium supplemented 

with 1% streptomycin–penicillin and 10% FBS in a 37°C, 95% 
air/5% CO2 cell culture incubator. In the treatment experiment, 
H9c2 cells were incubated with TIM at 0.1, 0.5, and 2.5 μM for 4 h, 
followed by treatment with 15 μg/mL LTA for 24 h; DMSO was used 
as the negative control.

Cell viability measurement
MTT assay was used to determine cell viability. After treat-

ment, H9c2 cells were seeded in 96-well plates at a density 
of 3.5×104/100 μL. MTT solution (10 μL) was added to each well, 
mixed by shaking briefly on an orbital shaker, and incubated for 
4 h at 37°C. DMSO (200 μL) was added to each well to dissolve 
the formazan by pipetting up and down several times. The absor-
bance was measured on an enzyme-linked immunosorbent assay 
(ELISA) plate reader, at a wavelength of 570 nm.

Measurement of mitochondrial membrane potential (MMP)
After treatment, H9c2 cells were incubated with 2 μM JC-1 for 

15 min at 37°C in the dark. The fluorescent dye JC-1 labels mito-

chondria with a low membrane potential green and those with a 
high membrane potential red. Fluorescence was assessed at an 
excitation wavelength of 490 nm and at an emission wavelength of 
590/530 nm on a fluorescence microplate reader (TECAN Polarion, 
UK). The change in MMP was expressed as a percentage of the 
negative control.

Cytochrome-c measurement
Cytochrome-c levels were measured by the assay kit, ac-

cording to the manufacturer’s instructions. After treatment, 
H9c2 cells were washed, fractionated, and incubated with the 
reagents. The optical density was measured on an ELISA plate 
reader at a wavelength of 490 nm.

DNA damage measurement
DNA damage was measured using γH2AX antibody by flow 

cytometry. After treatment, H9c2 cells were washed and perme-
abilized. After incubation with γH2AX antibody for 15 min, cells 
were washed and re-suspended in FACS buffer. The fluores-
cence was detected by flow cytometry.

Measurement of caspase activity
The caspase activities were measured by the assay kit. After 

treatment, H9c2 cells were harvested and 1×106 cells were ana-
lyzed for caspase-3 (Ac-DEVD-Amc, 390/475 nm) and caspase-9 
(Ac-LEDH-Afc, 400/505 nm) activities using the fluorescent assay 
kit, respectively, according to the manufacturer’s instruction. 
Caspase activity was expressed as a percentage of the negative 
control.

Measurement of MDA and GSH levels and SOD activity
MDA and GSH levels and SOD activity were measured by the 

assay kits, according to the manufacturer’s instructions. Briefly, 
after treatment, H9c2 cells were washed twice and then homog-
enized. After centrifugation at 10,000 rpm at 4°C for 10 min, the 
supernatant was used to measure MDA and GSH levels and SOD 
activity, which were expressed as a percentage of the negative 
control.

Measurement of reactive oxygen species (ROS)
Intracellular ROS was measured by the fluoroprobe DCFH-

DA. After treatment, H9c2 cells were washed twice with PBS 
and incubated with DCFH-DA for 30 min. After washing twice 
with PBS, the fluorescence intensity was measured by a fluo-
rescence microplate reader at 488/525 nm (TECAN Polarion, UK). 
The ROS level was expressed as a percentage of the negative 
control.

Cytokine assays
After treatment, the supernatant of culture medium was col-

lected to determine IL-1β, IL-12, and TNFα levels using ELISA kits, 
according to the manufacturer’s instructions.
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Real-time RT-PCR
After treatment, H9c2 cells were collected, and the total 

RNA was extracted with 1000 μl TRIzol reagent. RNA (0.5 μg) 
was added to SuperScript master mix, and reverse transcrip-
tion was performed to generate cDNA. Quantitative PCR was 
run on MX3000p (Stratagene) using comparative Ct value method 
to quantify the expression of target genes in different samples. 
The gene expression was normalized by the housekeeping gene 
β-actin. The gene-specific primer sequences are the following. 
For Il-1β, forward: AGGCTTCCTTGTGCAAGTGT; reverse: TGAGT-
GACACTGCCTTCCTG, NCBI reference: NM_031512.2. For Il-12, 
forward: ACCCTCACCTGTGACAGTCC; reverse: TTCTTGTGGAG-
CAGCAGATG, NCBI reference: NM_022611.1. For Tnfα, forward: 
ACTCCCAGAAAAGCAAGCAA; reverse: CGAGCAGGAATGAGA-
AGAGG, NCBI reference: NM_012675.3. For β-actin, forward: 
AGCCATGTACGTAGCCATCC; reverse: CTCTCAGCTGTGGTGGT-
GAA, NCBI reference: NM_031144.3.

Western blot analysis
After treatment, H9c2 cells were collected and lysed with 

RIPA lysis buffer. The protein concentration was determined by 
BCA protein assay kit (Beyotime). Samples with equal quantity 
(40 μg) of total protein were mixed with 4× loading buffer and 
subjected to electrophoresis on a 12% (v/v) SDS-polyacryl-
amide gel. Proteins were then transferred onto polyvinylidene 
fluoride membranes. After blocking with 5% dried skimmed milk, 
the membranes were washed thrice and incubated with pri-
mary antibodies at 4°C overnight (anti-Bcl-2 rabbit pAb ab59348, 
1:1000; anti-Bax rabbit pAb ab53154, 1:1000; anti-Nrf2 rabbit pAb 
ab137550, 1:1500; anti-NF-κB rabbit pAb ab16502, 1:1000; anti-
NADPH oxidase 4 rabbit mAb ab216654, 1:500; anti-β-actin rab-
bit pAb ab8227, 1:2000). After washing, the membranes were 
further incubated with corresponding horseradish peroxidase-
conjugated secondary antibodies. The membranes were then 
exposed to PierceTM ECL substrates (Thermo Scientific, MA, 
USA) followed by X-ray film development.

Statistical analysis
Data were analyzed with SAS 9.1 software (SAS Institute, 

USA), and Kolmogorov–Smirnov test was used for normality 

test. Values were expressed as mean±SD. Dunnett’s t-test was 
performed for comparing between the experimental and control 
groups. Measurement data between the two groups were com-
pared using the t-test; measurement data among multiple groups 
were compared using one-way ANOVA. P<0.05 was considered to 
be statistically significant.

Results

Effects of TIM on H9c2 cell viability
H9c2 cells were treated with TIM at different concentrations 

for 48 h. Compared with the negative control, TIM treatment did 
not reduce cell viability, as shown by Figure 1 and table 1.

TIM treatment protected H9c2 cells against LTA-induced cell 
damage
Significant toxicity on H9c2 cells was caused by LTA; how-

ever, treatment with TIM increased cell viability (Fig. 2a), together 
with the increase in MMP (Fig. 2b), decrease in the release of 
cytochrome-c (Fig. 2c), and reduction in DNA damage (Fig. 2d) 
and caspase activities (Fig. 2e) as well as changes in apoptosis-
related protein expression (Fig. 2f) (Table 2).

TIM treatment inhibited the oxidative stress
H9c2 cells were treated with LTA for 24 h with or without TIM. 

The oxidative stress was measured by MDA, ROS, and GSH levels 

Table 1. TIM did not cause significant toxicity in H9c2 
cells (mean±SD, n=3)

  Viability 

DMSO                                                                          99.67±1.53

                                        0.1  98.17±1.15 (P=0.42)#

TIM (μM)                        0.5  97.50±1.29 (P=0.18)#

                                        2.5  97.25±0.96 (P=0.06)#

#vs. DMSO
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Figure 1. H9c2 cells were treated with TIM (a) at 0.1, 0.5, and 2.5 μM for 
48 h, and then the cell viability was tested by MTT assay. TIM did not 
cause significant toxicity in H9c2 cells (b). Samples were measured in 
triplicate, and experiments were repeated thrice
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Table 4. TIM inhibited LTA-induced inflammatory response in H9c2 cells (mean±SD, n=3)

                           Gene expression    Protein
       expression

 IL-1β IL-12 TNFα Il-1β Il-12 TNFα NF-κB

DMSO 100.32±2.52 99.65±2.55 99.59±1.95 1.03±0.1 1.05±0.13 0.99±0.11 1.01±0.11

 207±9 139.58±5.69 145±9.17 8.56±0.83 8.43±0.97 8.7±0.8 1.45±0.12

 (P<0.001)# (P<0.001)# (P=0.001)# (P<0.001)# (P<0.001)# (P<0.001)# (P=0.009)#

                                                      0.1 195.32±9.5 131.35±5.86 135.25±6.51 8.83±0.61 6.75±0.8 7.8±0.6 0.84±0.08

 (P=0.19)* (P=0.15)* (P=0.21)* (P=0.68)* (P=0.08)* (P=0.21)* (P=0.002)*

LTA (15 μg/mL)      TIM (μM)     0.5 178±8.54 123±4.58 126±5 6.8±0.53 5.91±0.85 6.6±0.75 0.63±0.096

 (P=0.016)* (P=0.017)* (P=0.034)* (P=0.036)* (P=0.028)* (P=0.03)* (P<0.001)*

                                                      2.5 167.65±8.51 116±5.57 118±4 5.63±0.55 5.15±0.51 5.63±0.67 0.48±0.075

 (P=0.005)* (P=0.007)* (P=0.009)* (P=0.007)* (P=0.007)* (P=0.007)* (P<0.001)*

#vs. negative control; *vs. LTA alone

Table 2. TIM protected H9c2 cells against the LTA-induced cell damage (mean±SD, n=3)

                           Protein expression

 Viability MMP Cytochrome-c DNA damage Caspase-3 Caspase-9 Bax Bcl-2

DMSO 100.33±1.53 99.67±2.52 99.36±1.53 2.76±0.42 99.65±1.53 100±1.2 0.99±0.02 1.03±0.06

 58.56±4.73 58.35±6.11 155.25±9.51 16.2±2.49 224.35±13.05 197.61±13.58 1.89±0.08 0.4±0.1

 (P<0.001)# (P<0.001)# (P<0.001)# (P<0.001)# (P<0.001)# (P<0.001)# (P<0.001)# (P<0.001)#

                                                    0.1 67.15±5.51 66±5.57 139.61±9.02 14.67±2.16 200±11 161.25±10.59 1.39±0.078 1.32±0.08

 (P=0.36)* (P=0.18)* (P=0.11)* (P=0.47)* (P=0.18)* (P=0.15)* (P=0.002)* (P=0.002)*

LTA (15 μg/mL)     TIM (μM)     0.5 80.35±3.79 76±4.58 126.15±8.51 10.63±1.54 170.31±7.02 142±7 1.19±0.075 2.05±0.13

 (P=0.03)* (P=0.016)* (P=0.017)* (P=0.03)* (P=0.031)* (P=0.06)* (P<0.001)* (P=0.001)*

                                                    2.5 84.69±4.51 84.32±5.03 121±7.55 7.62±1.7 146.56±5.86 25.15±6.03 0.85±0.05 2.08±0.13

 (P=0.001)* (P=0.005)* (P=0.008)* (P=0.008)* (P=0.014)* (P=0.038)* (P<0.001)* (P<0.001)* 

#vs. negative control; *vs. LTA alone

Table 3. TIM inhibited LTA-induced oxidative stress in H9c2 cells (mean±SD, n=3)

                                Protein expression

 MDA ROS SOD GSH Total Nrf2 Nuclear Nrf2 NADPH oxidase 4

DMSO 100.25±2.53 99.58±1.55 99.36±1.15 100.16±1.53 1.02±0.03 0.98±0.03 1.02±0.1

 175±11.79 151.33±8.5 69.35±4.51 66±5.52 0.88±0.08 0.93±0.031 2.03±0.13

 (P<0.001)# (P<0.001)# (P<0.001)# (P<0.001)# (P=0.047)# (P=0.08)# (P<0.001)#

                                                      0.1 155±13.53 130.62±7.51 78.15±3.51 77±5.05 1.42±0.076 1.42±0.076 1.62±0.076

 (P=0.13)* (P=0.03)* (P=0.058)* (P=0.06)* (P<0.001)* (P<0.001)* (P=0.008)*

LTA (15 μg/mL)      TIM (μM)     0.5 142±11.79 123.52±6.11 84±5.57 82.67±4.16 1.44±0.05 1.44±0.05 1.53±0.08

 (P=0.027)* (P=0.011)* (P=0.026)* (P=0.014)* (P<0.001)* (P<0.001)* (P=0.004)*

                                                      2.5 127.62±8.62 117.26±6.66 87.36±4.51 88±4.58 1.59±0.04 1.59±0.04 1.33±0.12

 (P=0.005)* (P=0.006)* (P=0.009)* (P=0.006)* (P<0.001)* (P<0.001)* (P=0.002)*
#vs. negative control; *vs. LTA alone
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as well as by SOD activity and protein expression of nicotinamide 
adenine dinucleotide phosphate (NADPH) oxidase 4. Compared 
with negative control, oxidative stress was significantly induced 
after LTA treatment. However, treatment with TIM significantly 
reduced MDA and ROS levels and increased SOD activity and 
GSH levels, together with decreasing the protein expression of 
NADPH oxidase 4 and increasing the protein expression of both 
total and nuclear Nrf2, indicating that TIM effectively inhibited 
oxidative stress (Fig. 3 and Table 3).

TIM decreased the inflammatory response in H9c2 cells
H9c2 cells were treated with LTA for 24 h with or without TIM. 

Compared with LTA alone, treatment with TIM significantly de-

creased IL-1β, IL-12, and TNFα levels in the supernatant as well 
as their mRNA expression, together with the decrease of NF-κB 
protein expression (Fig. 4 and Table 4).

Discussion

In this study, we demonstrated that a novel antioxidant from 
herbal showed no toxicity in rat cardiomyoblast cells and pro-
tected H9c2 cells against LTA-induced cell damage by inhibiting 
inflammatory response and oxidative stress. Cardiomyocytes pro-
duce many proinflammatory cytokines in inflammatory response, 
and chronic inflammatory response causes oxidative stress, re-
sulting in severe organ damage and IE (15-17). Therefore, reducing 
chronic inflammatory response and inhibiting oxidative stress are 
effective strategies to prevent pathological progression.

Mitochondria play an important role in cell death regulation 
(18). Decrease in MMP induces the release of cytochrome-c 
from the mitochondria to nucleus and activates caspase-relat-

Figure 3. TIM inhibited LTA-induced oxidative stress in H9c2 cells. 
H9c2 cells were treated with TIM at 0.1, 0.5, and 2.5 μM for 4 h, fol-
lowed by treatment with LTA for 24 h. Cells were collected to measure 
the oxidative stress markers: MDA content (a); intracellular ROS level 
(b); SOD activity (c); GSH level (d); and oxidative stress-related protein 
expression (e). ##P<0.01 vs. negative control; *P<0.05, **P<0.01 vs. LTA 
alone. Samples were measured in triplicate, and experiments were re-
peated thrice
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Figure 2. TIM protected H9c2 cells against LTA-induced cell damage. 
H9c2 cells were treated with TIM at 0.1, 0.5, and 2.5 μM for 4 h, followed 
by treatment with LTA for 24 h. Cells were collected to measure the 
cytotoxicity. Cytotoxicity was determined by cell viability (a); mitochon-
drial membrane potential (b); cytochrome-c releasing (c); DNA damage 
(d); caspase activities (e) and apoptosis-related protein expression (f). 
##P<0.01 vs. negative control; *P<0.05, **P<0.01 vs. LTA alone. Samples 
were measured in triplicate, and experiments were repeated thrice
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ed apoptotic proteins, resulting in chromatin condensation and 
DNA damage. Measuring double stranded breaks has been of 
interest in the research because of its prediction of toxicity 
in cells (19, 20). As an apoptotic executor, caspase-3 together 
with caspase-9 precursor activates endonucleases and cleaves 
nuclear DNA, ultimately leading to cell death (21). In this study, 
treating H9c2 cells with LTA caused cell damage, characterized 
by decrease in MMP, release of more cytochrome-c, DNA dam-
age, and increase in caspase-3/9 activities. Anti-apoptotic pro-
tein Bcl-2 expression decreased, and pro-apoptotic protein Bax 
expression increased. However, the above effects induced by 
LTA were largely reversed by treatment with TIM.

Oxidative stress affects various biological macromolecules 
and impairs cellular function (22-24). This type of damage has 
been considered as a major cause of cellular injuries in some 
disorders (25-27). Therefore, supplementation of external anti-
oxidants to eliminate ROS is required to reverse the imbalance 
between the intracellular oxidative and anti-oxidative systems, 
as a potential therapy. ROS generation has been widely impli-
cated in the process of cell death (28). Nrf2 is a transcription 
factor involved in cellular defense against oxidative stress, 

which remains inoperative in the cytoplasm by binding to Keap1 
(29). Upon activation, Nrf2 is released from Keap1 and moves 
into the cell nucleus, binds with antioxidant response element, 
and induces cytoprotective target protein expression, such as 
phase II detoxifying enzymes, antioxidant proteins, and molecu-
lar proteasome/chaperones (30, 31). In this study, TIM-induced 
activation of Nrf2 was observed, which would subsequently 
trigger expression of antioxidant genes to restore oxidative ho-
meostasis, as evidenced by the markedly decreased protein ex-
pression of NADPH oxidase 4, reduced levels of MDA and ROS, 
and enhanced SOD activity and GSH level. The protective effects 
of TIM might be attributed to the hydroxyl groups with powerful 
free radical-scavenging ability.

Inflammatory cytokines such as TNFα, IL-1β, and IL-12 are 
important mediators in the progress of inflammatory diseases 
(32, 33). The production of these cytokines participates in the im-
mune response to many inflammatory stimuli. NF-κB has been 
considered as a prototypical proinflammatory factor, largely 
based on the activation of NF-κB by inflammatory cytokines such 
as TNFα and IL-1β, and the role of NF-κB in the gene expression 
of other proinflammatory mediators (34). Our results showed that 
treating H9c2 cells with LTA induced gene expression of IL-1β, 
IL-12, and TNFα, and resultantly increased their levels in the su-
pernatant. However, treatment with TIM significantly reversed 
the LTA effects. Additionally TIM inhibited protein expression of 
NF-κB, implying that TIM regulated the expression of other in-
flammatory molecules through NF-κB.

Study limitations
One limitation of this study is the use of cell line in the in 

vitro study, which is far from the real situation and can only be 
used as the lead compound screening. Hence, a corresponding 
in vivo study is required. The exact mechanisms of TIM against 
LTA-induced cell damage should be further explored.

Conclusion

Herbal plants have been confirmed to be an important source 
of medicinal products. Our study demonstrated that TIM isolated 
from A. katsumadai Hayata inhibited LTA-induced inflammatory 
responses and oxidative stress in cardiomyoblasts, providing 
the scientific rationale to develop TIM as a therapeutic agent in 
inflammatory diseases, including IE.
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Figure 4. TIM inhibited LTA-induced inflammatory response in H9c2 
cells. H9c2 cells were treated with TIM at 0.1, 0.5, and 2.5 μM for 4 h, 
followed by treatment with LTA for 24 h. Cells were collected to mea-
sure the inflammatory response: IL-1β content (a); IL-12 content (b); 
TNFα content (c); gene expression (d); and NF-κB protein expression (e). 
##P<0.01 vs. negative control; *P<0.05, **P<0.01 vs. LTA alone. Samples 
were measured in triplicate, and experiments were repeated thrice
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