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Increased cardiovascular risk associated with hyperlipoproteinemia (a) 
and the challenges of current and future therapeutic possibilities

Introduction

Lp(a) structure and metabolism
Lipoprotein (a) [Lp(a)] is a plasma lipoprotein consisting of a 

low-density lipoprotein (LDL) particle, which is cholesterol rich, 
one molecule of apolipoprotein B-100 (apoB), and an additional 
high molecular weight glycoprotein, apolipoprotein (a) [apo(a)], 
covalently bound to apoB with a single disulfide bond (1). Know-
ing at least some basics of Lp(a) metabolism, starting from its 
apoprotein synthesis, plasma modifications of the molecule, as 
well as its catabolism, is important not only for better under-
standing of its (patho-)physiological role but also to become fa-
miliar with the present and future therapeutic options (2).

Apo(a) is structurally homologous with plasminogen, synthe-
sized exclusively by the liver, and encoded by the LPA gene. It is 

hydrophilic and does not contain lipid domains or transport lipid. 
Genetic polymorphism studies of this gene indicate that Lp(a) is 
causally implicated in the development of CVD (3, 4). The true 
basis of the existence of size polymorphism of apo(a) isoforms, 
which is important not only for Lp(a) plasma levels (less repeats 
means higher plasma levels) but also for the function of the en-
tire molecule and the cardiovascular risk it carries, is created 
by the variable number of the so-called kringle IV type 2 repeats 
(from 2 to >40) within this gene.

The site of the assembly of the Lp(a) molecule, which con-
sists of two steps, first docking of the apo(a) onto the LDL and 
then linking of its apoB with the kringle IV type 9 of the apo(a), is 
not exactly known, but it most likely occurs either at the hepato-
cyte surface or in plasma. In addition, the site and mechanisms 
of Lp(a) catabolism are not yet fully understood. There is no spe-
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cific receptor for Lp(a) or apo(a) described, and basic studies 
on cell cultures, as well as genetic, animal, and human clinical 
studies, suggest only a moderate role of LDL receptor (LDLR) in 
its plasma clearance. It could be that some other catabolic paths 
can play a role, such as clearance via the kidney, scavenger 
receptor B1, and plasminogen receptors, as well as proteolytic 
degradation of apo(a) (1, 2).

Lp(a) and cardiovascular risk
It appears that the predominant physiological role of Lp(a) 

is to bind and transport proinflammatory oxidized phospholip-
ids in plasma. Lp(a) possesses additional characteristics, which 
can cause several detrimental effects on human health. It was 
demonstrated that the molecule is involved in almost all stages 
of atherothrombosis, from the beginning of the atherosclerotic 
plaque formation to the thrombosis, which follows its rupture. 
Lp(a) can induce the expression of inflammatory mediators, 
modulate platelet aggregation, increase foam cell formation, 
reduce fibrinolytic activity, and was found to be also involved 
in vascular remodeling and plaque calcification. All described 
above can explain the increased risk of atherosclerosis and CVD 
conferred by hyperlipoproteinemia (a) (1, 2, 5, 6).

Circulating Lp(a) levels are almost entirely (>90%) geneti-
cally determined and independent of age and gender. Plasma 
Lp(a) concentration can be found elevated in kidney disease, 
hypothyroidism, pregnancy, postmenopause, during growth 
hormone therapy, familial hypercholesterolemia (FH), and fa-
milial defective apoB. Elevated plasma concentration of Lp(a) 
is strongly associated with an increased risk of cardiovascular 
mortality and morbidity, mainly from coronary artery disease, 
ischemic stroke, and calcific aortic valve stenosis (4, 7, 8). Evi-
dence from large genetic and observational studies, as well as 
systematic reviews of prospective studies, showed a modest, 
but statistically significant relationship both in primary preven-
tion (within the general population) and in secondary preven-
tion populations (average hazard ratios of approximately 1.2–
2.0) (7, 9-13).

From the therapeutic point of view, it is important that the 
aforementioned almost absolute genetic determination of Lp(a) 
plasma values is also the main reason of why its increased 
plasma levels contribute significantly to the residual CVD risk 
in subjects with other risk factors under control. However, in 
this context, it is worth to mention the findings of the recently 
published analyzes from the EPIC Norfolk and Copenhagen City 
Heart studies (14). It was reported that patients with the high-
est Lp(a) levels demonstrated a greater risk of CV events at all 
LDL-C [corrected for a proportion of cholesterol being carried 
by Lp(a)] levels >2.5 mmol/L, but not in individuals with lower 
levels of LDL-C (15).

When to measure Lp(a) and the elevated risk threshold values
It is important to note that Lp(a) determination for screening 

or diagnostic purposes needs to be performed only once, since 

due to its almost entire genetic determination there are no sig-
nificant fluctuations over time. The most recent, 2019 European 
Society of Cardiology (ESC)/European Atherosclerosis Society 
(EAS) Guidelines for the Management of Dyslipidemias recom-
mend that measurement of Lp(a) should be systematically per-
formed in individuals with high CVD risk or a strong family history 
of premature atherothrombotic disease. In addition, Lp(a) mea-
surement should be considered in patients with intermediate-
to-high risk for CVD (16). Lp(a) testing would be reasonable in 
adults with first-degree relatives with premature atherosclerotic 
cardiovascular disease (ASCVD) (<55 years old in men and <65 
years old in women) or a personal history of premature ASCVD, 
as well as in primary severe hypercholesterolemia (LDL-C >190 
mg/dL) or suspected FH, and in patients with recurrent or pro-
gressive ASCVD despite optimal lipid lowering according to the 
guidelines developed by the United States-based scientific soci-
eties (National Lipid Association (NLA) and American College of 
Cardiology [(ACC)/American Heart Association (AHA)] (17, 18).

Since the measurement of Lp(a) levels is not included in the 
standard lipid profile, it is not easy to ascertain the potential 
number of all subjects with hyperlipoproteinemia (a) who would 
potentially benefit from treatment. For everyday practice, as well 
as in clinical studies, the most commonly used lower threshold 
value to define hyperlipoproteinemia (a) is an Lp(a) level of >30 
mg/dL. According to this threshold, large studies in different 
populations reported its prevalence in the general population in 
the range of 10%–35% (19). BiomarCaRE project (20), performed 
on a European population, confirmed Lp(a) as a marker of in-
creased CV risk at the level of >50 mg/dL, which is also in line 
with the cutoff levels recommended by the ESC/EAS, as well as 
the ACC/AHA guidelines. The same study also showed a North–
South gradient of Lp(a) levels across Europe, with lower levels 
in the Northern European cohorts. It is worth to mention that 
the 90th percentile of the values within the study cohorts, both in 
primary (Copenhagen Heart Study) and in secondary prevention 
(Long-Term Intervention with Pravastatin in Ischemic Disease), 
was found at approximately 70 mg/dL.

The reliability of the currently available laboratory mea-
surements
One of the Lp(a)-related issues being recently quite exten-

sively discussed in the literature is related to the validity and reli-
ability of the currently available assays for the measurement of 
the plasma Lp(a) concentration (21). Plasma Lp(a) levels are gen-
erally reported as mass concentrations (mg/dL), which include 
the protein content of apoB and apo(a), their associated lipids 
(cholesterol, cholesteryl esters, phospholipids, and triglycerides), 
as well as carbohydrates attached to apo(a). Lp(a) is mostly mea-
sured with immunochemical methods relying on the detection of 
the apo(a) where the problem arises related to the size polymor-
phism of this protein. Mass assays may contain significant bias 
due to a potential of significant heterogeneity of particle sizes to 
underestimate the levels of small and overestimate large Lp(a) 
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isoforms. In addition, there are some other important methodical 
issues in place, so as the fact that Lp(a) particles independently of 
its size polymorphisms vary in molar mass and hydrated density, 
as well as that Lp(a) forms mixed aggregates with LDL that are 
not always fully dissociable (22). This is the reason why the NLA 
recommended that Lp(a) measurements should be performed us-
ing an immunochemical assay that is calibrated against the World 
Health Organization/International Federation of Clinical Chemis-
try and Laboratory Medicine secondary reference reagent (23). 
Anyhow, in the future, more comparison studies of different as-
says and full standardization of the assays are needed, despite 
the currently available assays can be considered fairly accurate 
for differentiating low- from high-risk patients (2).

How much reduction of plasma Lp(a) is needed for the effec-
tive decrease of adverse cardiovascular outcomes?
The role of Lp(a) as a potential new therapeutic target evokes 

substantial and extensively increasing interest on its research 
(24, 25). From this perspective, it is important to cite the results of 
the recently published trials using proprotein convertase subtili-
sin/kexin type 9 (PCSK9) inhibitors (evolocumab and alirocumab, 
see discussion below), which confirmed that with already a 
modest Lp(a) reduction of up to 30%, the significant reduction of 
CV outcomes can also be achieved (26, 27). However, Mendelian 
randomization analyzes suggested that larger relative reductions 
would be needed in plasma Lp(a) than in LDL-C for the compa-
rable clinical effects. For each 10 mg/dL reduction of the plasma 
Lp(a), a 5.8% decreased CV risk was shown, which gives us the 
basis to calculate that for the substantial and significant effect 
to reduce the coronary artery disease, the absolute decrease of 

Lp(a) by 60–70 mg/dL would be needed (28). As this projected 
reduction is truly very large, it is important to recall that it may be 
modified in the overall setting of additional cardiovascular risk 
factors, where the clarification is needed on whether Lp(a) con-
tinues to be or not an important risk factor also in patients with 
low LDL-C levels (15). It is more than obvious that for the firmer 
conclusions on all these unanswered questions, further clinical 
trials would be needed. Emerging therapies targeting the apo(a) 
component of the molecule have the potential to revolutionize 
the management of individuals with elevated Lp(a). Prospec-
tively, exciting findings are expected from the additional clini-
cal studies using antisense therapy targeting the synthesis of 
apo(a), which was already shown to have the potential to lower 
Lp(a) by >90% of its initial values (29, 30).

Elevated Lp(a) Management–Current Treatment Approaches

The magnitude of Lp(a) lowering effects as well as the most 
probable mechanisms using currently approved and emerging, 
both primarily lipid lowering treatments and other Lp(a) lowering 
effective approaches are summarized in Table 1.

Classical lipid-lowering therapies
Statins
Statins continue to play the widely accepted key role of the 

comprehensive pharmacotherapy in primary and secondary 
CVD prevention owing to their substantial potency to decrease 
both LDL-C and cardiovascular risk. It was suggested that by 
achieving the target levels of LDL-C <1.8 mmol/L (70 mg/dL), the 
atherogenic potential of Lp(a) could also be overruled. Such an 

Table 1. Currently approved and emerging, both primarily lipid-lowering treatments and other Lp(a)-lowering effective 
approaches

Treatment Plasma Lp(a) change Potential mechanism(s) of Lp(a) lowering

Statins ↓ 5% to ↑ 20% Partial removal via LDLR, induction of apo(a) mRNA

Ezetimibe ↓ 10% Partial removal via LDLR, decreased Lp(a) synthesis

Niacin ↓ 23% Decreased apo(a) production rate

Fibrates N to ↓ 25% Inhibition of apo(a) transcription

CETP inhibitors (anacetrapib) ↓ 35% Decreased apo(a) production rate

Lp(a) apheresis ↓ >60% (per procedure)/↓ 30% (long term) Physical removal of Lp(a) particles

Anti-PCSK9 antibodies ↓ 30% Removal via LDLR

Anti-PCSK9 siRNA (inclisiran) ↓ 25% Decreased production of apoB

Mipomersen ↓ 25–40% Apo(a) production rate and catabolism

IONIS-APO(a)Rx/IONIS-APO(a)-LRx ↓>80%/↓ >90% Inhibition of apo(a) synthesis

Aspirin ↓ 18–56% Suppression of apo(a) mRNA and apo(a) production

Hormone replacement therapies ↓ 25% Inhibition of apo(a) synthesis

(estrogens, tibolone, tamoxifen)

Lp(a) - lipoprotein (a); apo(a) - apolipoprotein (a); apoB - apolipoprotein B-100; LDLR - LDL receptor; CETP - cholesteryl ester transfer protein; PCSK9 - proprotein convertase subtilisin/
kexin type 9; siRNA - small molecule inhibiting RNA; APO(a)Rx - antisense oligonucleotide that inhibits apo(a) synthesis in the liver; APO(a)-LRx - APO(a)Rx conjugated with  
N-acetyl-galactosamine; CV - cardiovascular
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assumption was proven wrong, since it was demonstrated that 
high plasma Lp(a) stays as an independent major risk factor 
for CVD even in patients who achieve the recommended LDL-
C and leads to increased atherosclerosis burden and residual 
risk (31-33).

Statin therapy in general does not reduce plasma Lp(a); on 
the contrary, many studies showed that most of them actually in-
crease its levels, by even up to 25%. The main reason behind could 
be the fact that LDLR does not play a significant role in Lp(a) clear-
ance, and in addition, based on cell culture studies, it was shown 
that treatment with statins can result in an increase expression of 
LPA mRNA and consequently the apo(a) (31, 34, 35).

Recently, it was suggested that in an individual patient, the 
Lp(a) effect of a statin can differ in accordance with the isoforms 
of apo(a) size polymorphism, the Lp(a)’s major genetic regulator 
(35, 36). In subjects who initiated statin therapy, it was observed 
that statins significantly increased Lp(a) levels in carriers of 
a small size apo(a), whereas no significant changes were ob-
served among non-carriers, i.e., in patients having a high mo-
lecular weight phenotype (37). However, this interesting finding 
should be interpreted cautiously and need to be confirmed in 
larger studies, since mechanisms underlying the selective in-
crease in Lp(a) in carriers of a small apo(a) are unclear. One pos-
sible hypothesis could even be that perhaps an overall increased 
awareness of patients initiating statin therapy regarding healthy 
lifestyle may contribute, while it was shown that the reduced 
intake of saturated fat could be associated with an increase, 
whereas its increase with the decrease of Lp(a) level (38-40).

It remains to be recommended, even in patients with eleva-
ted Lp(a), that statins should be used in their highest needed or 
tolerable doses. The rationale behind is to achieve as great as 
possible reduction of the overall CVD risk through the statin ef-
fect on the LDL-C-related portion of it, since at the end, the effi-
cacy of statins in reducing CVD appears similar among subjects 
with high or low Lp(a) concentrations (32).

Ezetimibe
Ezetimibe can moderately reduce plasma LDL-C, and in very 

high-risk patients, this effect has been associated with an im-
provement of cardiovascular prognosis (41). It was hypothe-
sized that this drug would also have an impact on plasma Lp(a), 
and a beneficial effect of ezetimibe on plasma Lp(a) levels was 
indeed reported owing to the similarity in the lipid composition 

between Lp(a) and LDL particles (42-44). Recently published 
larger meta-analysis of otherwise inconsistent results of 10 
randomized placebo-controlled trials showed that this is prob-
ably not the case (45). Subgroup analysis did not show any sig-
nificant change of plasma Lp(a) either in trials evaluating the 
impact of monotherapy with ezetimibe versus placebo or in tri-
als assessing the impact of adding ezetimibe to a statin versus 
statin therapy alone (45).

Niacin
Treatment with niacin was proven effective to decrease 

plasma Lp(a) levels (46). Large meta-analysis demonstrated 
a 22.9% reduction of Lp(a) with an extended-release niacin 
(ERN), which was not shown to be dose-related (47). The ERN-
induced reduction of Lp(a) levels was shown proportional to 
the apo(a) isoform size and is due to a significant decrease of 
apo(a) production rate, either through the direct inhibition of 
transcription of the apo(a) gene or to the increased retention of 
apo(a) at the hepatocyte surface (48, 49). Currently, the use of 
this drug in clinical practice is significantly limited since unfor-
tunately, later trials showed that niacin co-administered with 
statins in patients with CVD does not improve cardiovascular 
outcomes and is also associated with an increased risk of ad-
verse events, so the expected potential net beneficial clinical 
effect can be rather poor (50, 51).

Fibrates
In a meta-analysis, fibrates were shown to have a signifi-

cantly greater effect in reducing plasma Lp(a) concentration 
than statins, despite studies showing mixed results – they were 
effective in some, whereas not in other studies (52, 53).

PCSK9 inhibition
In addition to their prominent substantial effect on plasma 

LDL-C reduction and associated prevention of major ASCVD 
events, both currently available anti-PCSK9 antibodies (evo-
locumab and alirocumab) also significantly decrease Lp(a) plas-
ma concentrations (by up to nearly 30%) (54, 55). Their effects 
were shown to be greater in patients with higher baseline Lp(a) 
levels. The mechanism by which PCSK9 inhibitors decrease 
plasma Lp(a) has not been clearly elucidated. In this context, it 
is interesting to draw parallels between the findings related to 
the Lp(a) effects for both PCSK9 inhibitors and statins. Despite 

5 key messages related to lipoprotein (a)

• Lipoprotein (a) [Lp(a)] is a proatherogenic, prothrombotic, proinflammatory, and prooxidative particle.

• Circulating Lp(a) levels are genetically determined, so one measurement is sufficient for risk assessment.

• Lp(a) should be measured in individuals with high cardiovascular risk, severe primary hypercholesterolemia, premature atherosclerosis,

 or a strong family history of premature atherothrombotic disease.

• Currently available treatment options to lower plasma Lp(a) are far from being optimal.

• Novel targeted therapies, e.g., antisense oligonucleotide treatment, to inhibit Lp(a) synthesis are being evaluated in ongoing trials.
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both groups of drugs reduce LDL-C through the upregulation 
of LDLR, their effect on Lp(a) is different. It could be that while 
Lp(a) may perhaps have lower affinity for the LDLR than for the 
LDL particle itself, a reduced level of competition between Lp(a) 
and LDL as the levels of the latter are reduced might increase 
the potential for receptor-mediated clearance of Lp(a) (54, 56). It 
has also been suggested that PCSK9 inhibitor used as a mono-
therapy lowers the plasma Lp(a) by decreasing the production 
of Lp(a) particles, whereas PCSK9 inhibition in combination with 
statins also lowers the plasma Lp(a) pool size by accelerating 
the catabolism of Lp(a) particles (57).

It was reported that in patients with higher than median 
Lp(a), greater absolute reduction of different major adverse car-
diac event (MACE) can be achieved from CV outcome trials us-
ing anti-PCSK9 antibodies (FOURIER and ODYSSEY Outcomes) 
(26, 27). The same was confirmed in patients with a recent acute 
coronary syndrome (ACS) treated with alirocumab, which sug-
gested that Lp(a) could be a therapeutic target in selected pa-
tients after recent ACS (27). On the other hand, in post-hoc ana-
lysis of data pooled from 10 phase 3 alirocumab trials in patients 
with CVD and/or risk factors and hypercholesterolemia despite 
statin/other lipid-lowering therapies, the authors could not de-
monstrate a significant association between Lp(a) reductions 
and MACE, which would be independent of the LDL-C decrease 
(55). Recently, it was suggested that in PCSK9 inhibitor-treated 
patients with hyperlipoproteinemia (a), only modest lowering of 
Lp(a) – being indeed associated with the significant LDL-C de-
crease – could be associated with the persistence of the arterial 
wall inflammation (58).

In addition to anti-PCSK9 monoclonal antibodies, small mole-
cules are also in development which inhibit PCSK9 RNA (siRNA). 
These agents, through the silencing of the PCSK9 gene, prima-
rily lower LDL-C and apoB. With their use, some promising initial 
results were already shown, not only in relation to their LDL-C 
lowering effect but also in their ability to decrease plasma Lp(a). 
In ORION-1, a phase 2, multicenter, double-blind, placebo-con-
trolled trial, treatment with inclisiran, a long-acting, synthetic 
siRNA directed against PCSK9, aside of up to 52.6% reduction 
in LDL-C, resulted in a 25.6% reduction in Lp(a), comparable with 
evolocumab and alirocumab effects (59).

In summary, conclusive evidence is still lacking as to wheth-
er the treatment with PCSK9 inhibition against background statin 
therapy can actually additionally reduce ASCVD risk due to the 
lowering of Lp(a), or the beneficial result is simply due to the low-
ering of LDL-C to levels much lower than achieved by the high-
intensity statin treatment as monotherapy (60). As it was already 
mentioned, the true additional effect to reduce the risk of MACE 
by targeting Lp(a) may require extensive Lp(a) reductions, larger 
than those which can be attained with PCSK9 inhibitors, and it 
can potentially come true either with more potent therapies and/
or only in patients with very high initial Lp(a)/LDL-C levels (27). 
Ongoing trials will undoubtedly provide at least some answers 
to these questions.

Lp(a) apheresis
Lipoprotein apheresis (LA) can effectively decrease Lp(a) 

concentrations in patients with severe progressive ASCVD and 
very high Lp(a) levels. LA involves the physical removal of lipo-
proteins from the blood, lowers levels of Lp(a) significantly by 
>60% per treatment, or to an average of approximately 30% on 
long-term. In principle, this treatment is employed in patients 
with very high hypercholesterolemia who cannot achieve ac-
ceptable plasma lipoprotein levels despite appropriate lifestyle 
changes and the most intensive possible pharmacologic lipid-
lowering interventions applied (61, 62).

Some trials and data from registries show that regular aphe-
resis effectively reduces CV events (63). The results of 5 years of 
prospective follow-up confirmed that Lp(a) apheresis has a last-
ing effect on the prevention of CV events in patients with hyper-
lipoproteinemia (a), reducing the mean annual cardiovascular 
event rate by up to 80% (64, 65). However, it should be noted that 
LA removes Lp(a) and LDL simultaneously, which makes it hard 
to distinguish the beneficial effects of lowering either one or the 
other molecule of the two.

LA is an invasive, in most cases until recently, also a life-
long therapeutic method by which venous puncture problems 
may arise, hypotensive episodes may occur, and there is a risk 
of bleeding due to the use of anticoagulation needed during LA 
sessions. The method is expensive and impractical for most pa-
tients, and its feasibility depends mainly on the healthcare re-
imbursement system (66). LA still plays a significant role in the 
management of patients with homozygous FH, as well as in the 
management of some patients with other severe drug-resistant 
dyslipidemias and established CVD.

Other less used lipid-lowering therapies
Anacetrapib, a cholesteryl ester transfer protein (CETP) in-

hibitor, induced up to 35% reduction of plasma Lp(a) concentra-
tion, and it appears that Lp(a) lowering could be due to a reduc-
tion in the apo(a) production rate (67). Anyway, these drugs are 
currently not being used in clinical practice, since the effects of 
these agents in the most important clinical studies on CVD risk 
were shown to be harmful, neutral, or only slightly positive.

Mipomersen, an antisense oligonucleotide (ASO) targeting 
the synthesis of apoB [but not the apo(a)], being currently ap-
proved for the treatment of homozygous hypercholesterolemia, 
demonstrated the effect of 25%–40% reduction of plasma Lp(a) 
(68). The main limitation with this drug to be used for the treat-
ment of hyperlipoproteinemia (a) stays with its safety issues, 
since several potential adverse effects which frequently lead 
to a discontinuation of the treatment (e.g., injection-site reac-
tions, hepatic steatosis, and elevated liver enzymes) were re-
ported (69).

Eprotirome, a thyroid hormone analogue, demonstrated even 
a greater mean reduction of Lp(a) levels of up to 43% in otherwise 
statin-treated patients (70). Anyhow, longer trials are required to 
confirm such a beneficial Lp(a)-lowering effect of eprotirome, as 
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well as its safety with regard to potential long-term adverse thy-
romimetic effects.

Additional choices
Aspirin
This traditional drug has also been found with a favorable 

effect in hyperlipoproteinemia (a), and this option appears quite 
useful since the drug is already almost universally prescribed 
to patients at high- or very high cardiovascular risk and those 
who already manifest ASCVD. Reports from two small trials 
in patients with CAD and/or stroke demonstrated that aspirin 
in a dose of 81 or 150 mg can reduce Lp(a) plasma concen-
trations by 18%–56%, with a greater effect shown in patients 
with higher Lp(a) levels at baseline (71-73). It appears that with 
the suppression of apo(a) mRNA, the apo(a) production from 
hepatocytes is also inhibited from in vitro studies on human 
hepatocytes to explain the potential molecular mechanism 
of aspirin-induced Lp(a) reduction (74). As it is the case with 
many other Lp(a)-lowering therapies, such an effect of aspirin 
will also need to be evaluated in prospective, randomized con-
trolled trials.

Hormone replacement therapies
The favorable effect of estrogen and/or hormone replacement 

therapy (HRT) on hyperlipoproteinemia (a) is supported with an 
extensive clinical evidence. Meta-analysis of >100 trials evaluating 
the different CV protective effects of HRT in postmenopausal 
women demonstrated a mean Lp(a) level reduction of 25% (75). 
Such a finding among those taking HRT was confirmed by 19% 
lower Lp(a) accompanied by an attenuation of the predictive value 
of Lp(a) levels on CVD risk (76). Despite the Heart and Estrogen/
progestin Replacement Study failed to reduce the overall rate of 
coronary heart disease (CHD) events and was also associated 
with an increase in the rate of thromboembolic events (77), it was 
shown that HRT exerted a more favorable effect in women with 
higher initial Lp(a) levels, and that the subset of women on HRT 
who achieved substantial reductions in Lp(a) also had a significant 
reduction in the risk for CHD events (78).

In addition, some other estrogen-related agents, such as ti-
bolone and tamoxifen, were being evaluated for their effect on 
Lp(a) (79, 80). According to systematic reviews and meta-ana-
lyzes, treatment with tibolone can lead to a significant 25.3% 
mean reduction in Lp(a) levels in postmenopausal women (79). 
While also with treatment with tamoxifen, a selective estrogen 
receptor modulator (otherwise widely used in the treatment 
of breast cancer), a significant reduction in Lp(a) levels was 
demonstrated (80). However, to make a somehow stronger rec-
ommendation on the use of these agents, the impact of the ob-
served Lp(a) reductions on CVD risk remains to be explored in 
additional trials.

Since the current evidence does not support the use of post-
menopausal HRT with the aim of either primary or secondary 
prevention of CVD, the favorable effect of the use of estrogen/

HRT in the treatment of hyperlipoproteinemia (a) is restricted 
only to women who have an indication for taking it due to a gy-
necological reason (77, 81).

Nutraceuticals
It was already mentioned above that the increase of satu-

rated fat intake may decrease Lp(a) concentration and, simi-
larly, can be with ethanol (especially red wine) intake, where of 
course limits are necessary. Coffee and tea intake may decrease 
Lp(a) level, but further investigation is crucial before they can be 
considered potent Lp(a)-lowering agents. Meta-analysis on the 
plasma Lp(a) effect of garlic did not find a relevant change ob-
tained by its consumption; in the subgroup of trials lasting for >12 
weeks, a significant increase in plasma Lp(a) concentrations 
was reported (82). Among food-supplementing strategies, only 
L-carnitine and coenzyme Q10 were found as potentially promis-
ing alternatives in achieving lower Lp(a) levels, whereas despite 
potential CV benefits, current research fails to justify the use of 
higher doses of vitamin C, soy isoflavones, and/or ω-3-fatty acids 
for this purpose (83).

Emerging Treatment Possibilities with RNA-Targeted  
Therapies

Apo(a) is synthesized in the liver, so the therapies directed 
on the hepatocytes are also likely to be most efficacious in Lp(a) 
lowering. As already mentioned, mipomersen, an ASO which 
markedly inhibits mRNA of apoB, does not affect the production 
of apo(a), but could lower Lp(a) by influencing the Lp(a) assem-
bly. The ASO by which we can inhibit apo(a) synthesis in the liver 
is currently the only available approach for specific Lp(a) lower-
ing (84, 85). Being injected subcutaneously, they enter the circu-
lation and bind to plasma proteins, while after entering the liver, 
they accumulate in the hepatocytes. ASOs bind intracellularly to 
their target mRNA, mainly in the nucleus, but possibly also in the 
cytoplasm if mRNA is present there. When a double-stranded 
complex is formed, ribonuclease H1 cleaves the sense strand 
to prevent protein synthesis, but the antisense strand (i.e., ASO) 
can bind to additional mRNA targets. In case of ASO to apo(a), 
the hepatocytes can continue to synthesize LDL particles and ex-
port them; therefore, steatosis (as with mipomersen) should not 
occur, but both apo(a) alleles will be inhibited, Lp(a) assembly 
prevented, and plasma Lp(a) levels reduced.

Early phase clinical trials using IONIS-APO(a)Rx showed very 
substantial, dose-dependent Lp(a) reduction (up to 80%) and at 
the same time confirmed that the treatment is well tolerated. In 
addition, a significant reduction was noted in proinflammatory 
OxPL and in the inflammatory effects of monocytes, which are 
cells that initiate and accelerate ASCVD (86).

By the development of the advanced, hepatospecific N-
acetyl-galactosamine-conjugated molecule (IONIS-APO(a)-
LRx), which was genuinely designed to be more highly and se-
lectively taken up by hepatocytes, the drug is approximately 30 
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times more potent. The results of the IONIS-APO(a)-LRx phase 
2 trial were presented recently. The highest dosages reduced 
Lp(a) by >90%, and the Lp(a) levels of <50 mg/dL were achieved 
in almost all patients. Tolerability and safety were confirmed, 
whereby only injection-site reactions were the most common 
side effects. It is important to note that in fact, 12% of injec-
tions with IONIS-APO(a)Rx were associated with injection-site 
reactions, whereas IONIS-APO(a)-LRx was associated with no 
injection-site reactions. Thus, these new agents targeting the 
synthesis of apo(a) may potentially assist clinicians effectively 
to diminish Lp(a)-mediated cardiovascular risk (87). In addition, 
all described raises hope that the planned phase 3 trial will 
reproduce these findings and also show a significant reduction 
of cardiovascular events.

Conclusion

Many pre- and clinical studies confirmed the important role 
of elevated plasma Lp(a) in increasing the risk of ASCVD, which 
is independent of the LDL-C effects. This makes hyperlipopro-
teinemia (a) an optimal therapeutic target in ASCVD preven-
tion. It is well known that an early detection and intervention, 
preferably before the onset of ASCVD, offers the best opportu-
nity to reduce the time-dependent risk associated with this im-
portant risk factor. However, clinical evidence on Lp(a) reduc-
tion as a true and beneficial effect in preventing ASCVD events 
is limited. The currently available treatment options to lower 
plasma Lp(a) are far from being optimal, either because of too 
moderate effect to assure the clinical benefit, lack of outcome 
trials, or safety issues. At the same time, some new therapeutic 
interventions and novel targeted therapies are being evaluated 
in ongoing trials. It appears that we can bet the most on the 
new-coming treatment with ASO therapies targeting apo(a), 
which in early phase clinical trials have already demonstrated 
promising results, both regarding efficacy and safety. More ex-
tensive and longer clinical studies will confirm those and trust 
that our optimism will be paid off by the rather quick introduc-
tion of these new, potentially much more effective treatments 
into everyday clinical practice.
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