Climatic Changes and Psychiatric Disorders

İklimsel Değişiklikler ve Psikiyatrik Hastalıklar

Kader Semra Karatas¹, Sevda Oacak²

¹Recep Tayyip Erdogan University, Psychiatry Department, Rize, Turkey
²Giresun University, Engineering Faculty, Environmental Engineering, Giresun, Turkey

ABSTRACT

Although recognition of seasonal influences on psychiatric disorders lie down old times, documentation of seasonal influences is not more than two decades old. The imbalance of meteorological factors, such as mean temperature, day light duration, humidity, atmospheric pressure can create many disorders in the normal life of sensitive people. The most common reaction to changing weather conditions could have seen as a psychological, emotional or behavioral character and seen as many psychiatric disorders or increases incidence of the psychiatric diseases. While many studies have focused on the impact of seasonality at bipolar and related disorders there have a little knowledge about other psychiatric disorders such as schizophrenia, sleep disorders, anxiety disorders. Same brain regions, neuronal phasic firing, neuronal transmission, presynaptic / postsynaptic neurotransmitter’s level changes can be affected similar way by climatic changes, psychological status, psychiatric diseases. Several researchers have studied different affect of climatic factors to susceptible people and/or people who have psychiatric diseases, but seasonality is still unclear in those population. In this literature we have reviewed association among meteorological factors, like temperature, day light duration, humidity, atmospheric pressure, psychological states and psychiatric disorders by searching Medline, PubMed, Science direct literature scanning.

Keywords: climatic changes, sleep disorders, bipolar disorders, suicides, anxiety disorders

ÖZET

Anaktar Kelimeler: iklimsel değişiklikler, uyku bozuklukları, bipolar bozuklukları, suisidler, anksiyete bozuklukları

Introduction

Sleep / Sleep Disorders

Human sleep is susceptible to environmental changes. Normal human sleep is formed with non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep. Sleep begins in NREM that have content light sleep stage and deep sleep stages in which slow wave sleep (SWS) have. REM sleep occurs approximately 1.5 hours later from NREM sleep, after which it reoccurs every 1.5-2 hours in different episodes (1-3). Subjective measures of sleep with climatic changes generally studied by sleep quality questionnaires (4). Recently researches evaluate sleep with polysomnography which is objective measures of sleep that appraise human sleep at different environmental situation (3,4).

Temperature is a kind of environmental factor that sleep studies have done in different temperature to see the possible effect on human sleep (3). Core body temperature is a physiological phenomenon that cause changes to heat with increases or decreases alteration. It was shown that decreasing of core body temperature causes sleep initiation and may be helpful to entry into

¹Sorumlu Yazar: Kader Semra Karatas, Recep Tayyip Erdogan University, Psychiatry Department, Rize, Turkey, Phone: 04642123009/3427, Mobil Phone: 0(506) 665 00 57, E-mail: drsemraaidil@gmail.com, semra.karatas@erdogan.edu.tr
Geliş Tarihi: 15.01.2018, Kabul Tarihi: 11.02.2018

DOI: 10.5505/vtd.2018.50455
the deeper stages of sleep (4). Recent studies have shown that there is an association between core (rectal) temperature and distal (foot) temperature to regulate sleep. Core temperature decreases in older ages which affects to circadian rhythms and causes poor sleep quality. A warm bath before sleeping can reduce foot temperature and improve sleep in young women (5,6). The thermoregulatory and sleep regulatory systems are not understood well but they can be associated with each other. Many studies show that the preoptic area/anterior hypotalamus, which is the major brain region drives heat loss, is important for sleep regulation (5). When the heat reduces on distal part of body, it affects both circadian rhythm of body temperature and the sleep–wake cycle that causes sleep. The pathophysiology of sleepiness is due to enlarged blood vessels which lies at distal part of the body (5-8). The effect of the heat is measured with subjective measurement on susceptible persons. These results are supported with objective measurement like PSG. There had been no significant changes between PSG and subjective measurement (3,5). However, some researchers have showed reduced sleep latency, increased SWS and elevated sleep quality in short-term heat exposure with laboratory studies (3,6-8). The other researches have shown decreases both in SWS and REM sleep or solely REM sleep with frequent sleep interruptions when the sleep continue between 31 and 38 °C (4). Midnight hypothermia caused numerous awakenings and sleep disruption. REM sleep episodes were much shorter in the cold (3). The effects of heat or cold exposure are increased wakefulness and decreased REM sleep and SWS (8). Thermal environment’s impact on sleep stages regulating sleep mechanism are closely associated with thermoregulation (3,6). Thus, environment (like suitable temperature) is important for sleep maintenance (8). Light is another factor that is affecting human sleep. Melatonin is secreted from pineal gland and regulates sleep cycles. Sun light is effective on melatonin secretion. Melatonin is associated with sleep latency and sleep quality because of its hypothermic effect. At night time melatonin levels increases, core temperature decreases and sleep sensation is elevated. Exhaustive studies have shown that melatonin can make sleep quality better (3,9). Sleeping under warm humid conditions did not cause any apparent changes both in hot and dry climate. (3,10). Altitude is an agent that can effect human sleep. Insomnia appear at altitudes over 2000m. Sleep parameters especially SWS is a decreased with several arousal reactions. Obstructive sleep apnea can be worsened, and central sleep apnea can be seen in high altitudes. The pathophysiology of sleep disturbance is considered related with oxygen desaturation and respiratory disturbances (11).

When the sleep wakefulness cycle such as sleep latency, NREM sleep stages, REM latency, REM sleep effected it can be seen as insomnia, hypersomnia, parasomnia, circadian rhythm disturbance at sensitive persons.

Mood/ Bipolar and Related Disorders

Mood is a sensation that is associated with multi variable environmental factor (12). Several studies have shown that atmospheric conditions can affect well-being or disease, at some individuals (12-16). An association between season and depression is demonstrated (17). Bipolar disorders (BD) is a mood disorder that is seen with periods of hypomanic/manic and depressive episodes. It has found that climatic variables such as hours of sunshine, temperature and rainfall have a significant association with the admission rates for manic, depressive episodes (18-20). Researches have shown that manic episode is mostly seen in spring. It can be associated with hours of sunshine and sunlight radiation (20). The spring or summer peak in mania has not been a universal finding, as some investigators report bimodal peaks in spring (21). Moreover, other studies cannot demonstrate any seasonal variation in referral rates for mania (1,18,22). It was shown that when the temperature is rising at summer BD patients hospital admission rate is increasing (23). Although admission rates are high between spring/summer time and manic episodes, there have less sign on seasonal influences in depressive episodes (2,3,19,24). There are few studies about mixed episodes admission and seasonality. It is considered that late summer peak has been more in mixt episodes (2,24,25). Seasonality of BD mixed episode has been studied at eastern Turkey at Blacksea in Rize and found that winter admissions were most in mixt episodes (26). Seasonal affective disorders (SAD) is a subtype of BD which is worsened in winter and been well at spring/summer time (3). It is considered that sunlight radiation and neurochemical changes are associated with SAD (23). Guzman et al. 2007 hypothesized that polen, aerallergen can cause inflammation in the respiratory airways that will be associated with depression in vulnerable individuals as called non-winter SAD (27). Lee et al. (2012) has reported that SAD is associated with delayed sleep phase syndrome (21). SAD patients

Van Tip Derg Cilt:25, Sayr:2, Nisan/2018

269
become depressed in the winter at least in part because of a phase delay with respect to the sleep/wake cycle. Sky cover can change in photoperiod and light intensity. It is related with circadian rhythmicity in humans and can associate with the pathophysiology of BD (28,29). The circadian rhythm of temperature is endogenous. The depressive phase of patients may have temperature-clock desynchronization. Sufferers from depressive illness especially worsen at the morning time that can be closely related with body temperature (30,31). Small positive ions which is high concentration on the atmosphere is related to atmospheric humidity that is associated with psychiatric symptoms such as mania. A negative correlation between manic admissions and relative humidity was observed (5,27,28).

Schizophrenia

While many studies of seasonal variation in psychiatric admissions focus on the affective disorders, some authors have reported seasonal variation in schizophrenia (33-38). There have been varied data about temperature and schizophrenia. Although some studies have supported that temperature is a factor which caused admission rates of schizophrenia (32-34) but other studies have not supported it (35,37). Byrne et al. (2015) have reported the summer peak in admissions for schizophrenia (38). Zhao et al. have found that increasing temperature was especially associated with an increased risk for schizophrenia admissions. Moreover, the associations of temperature with schizophrenia admissions is linked with gender (34). Some studies have found a summer peak for schizophrenia only in females (36-38). There are few studies and knowledge about the impact of temperature on schizophrenia.

Researchers have studied relation between birth season and schizophrenia (39-44). Schizophrenia was seen more in winter births that is support with the viral hypothesis of schizophrenia (41). However, Wang and Zhang (2017) have reported that people who were borned in spring have highest risk for schizophrenia (42). Reid and Zbrowski (2006) have found that schizophrenics have been reported to show increasing rates in cold weather like winter and spring births. They have also reported latitude plays a role plays in the seasonality impact of schizophrenia (43). Suvisaari et al. have investigated schizophrenia, siblings, environmental seasonal factors, winter- spring birth, that have found no relation with each of them (44). Schwartz (2014) has reported that melatonin levels decreased at second trimester of pregnancy in winter and that was affecting core temperature and increased excitability of hippocampal, ventral striatal dysfunction. Author also considered that winter melatonin levels can be associated with propensity for abnormal nigrostriatal neuronal phasic firing and increased presynaptic nigrostriatal dopamine transmission as called maternal–fetal chronobiological hypothesis (39). Hypothalamic suprachiasmatic nucleus is regulated by photoperiod and that affects dopamine signaling and neurotransmission. In many studies infections, latitude, season, temperature have been discussed but there no absolute results stating an association with schizophrenia and them (44).

Suicides

Increasing suicides are major public health problem of the world. Although epidemiological studies for suicides have proposed numerous factors by several researches, seasonal impact has drawn remarkable attention recent history (45,46). Many studies have consistently demonstrated seasonal fluctuations in suicidal deaths in several populations (45-51). There is widely belief that darkness is a major factor of suicides and winter and autumn is a risk factor for suicides. But most of the studies showing spring and summer peaks (45). Björksten et al. (2009) have been studied that a suicide was mostly in the summer months (47) and most reported at high latitudes (46). Violent suicides such as falling from high, shooting deaths, hanging etc. are more common in summer (48,49) and the majority of suicides seem impulsive. Some researchers have suggested that biochemical mediators have major role to differentiate of suicide types and heterogeneity. Authors have also reported that plasma levels of serotonin and melatonin concentrations are changed with seasonal suicides (48). Some authors have hypothesized that not heat but lack of cold were associated with suicides (48). Some authors have hypothesized that suicides were associated with elevated temperature, sunlight duration and humidity (48). There have been no consistent results shown with the other meteorological data like precipitation (45).

Anxiety / Anxiety Disorders

Seasonality is still unclear in anxiety or anxiety disorder in healthy group and patients with any anxiety disorder. Winthorst et al. (2011) have searched the seasonal affect on anxiety disorders and healthy group. They have found no association
between seasonality and healthy group. Also they have found minimal increase of depressive symptoms with seasonality at anxiety disorders. Severity of anxiety symptoms were lowest at autumn and spring, highest at winter and summer (52). Many researchers studied the affect of season with questionnaire studies at anxiety and/or anxiety disorders. They are suggested that there is different reaction in several months (52-54). Although researchers have found a peak of prevalence for anxiety disorders in any month (55), general anxiety disorder, panic disorder, obsessive–compulsive disorder (OCD), tension-anxiety are reported to be most prevalent in autumn and winter months (54,56). It is known that both OCD are associated with high levels of anxiety. Tan et al. (2016) have showed the duration of sunlight is associated with compulsions but not obsessions in OCD. They have also shown the affect of seasonality and sunlight exposure to OCD are far from being explained by our current knowledge (57). The psychobiological basis underlying relation between seasonality and anxiety/anxiety disorders are still uncertain (53,57).

As a result of bioclimatic variation and seasonal changes may affect many sensitive persons and causes several psychological states and psychiatric disorders. Although many studies have shown that possible affects of climatic changes on brain regions, neuronal phasic firing, presynaptic and postsynaptic neurotransmission but there are not enough studies to evaluate these situations and more studies are needed.

References

19. Morken G, Lillegard S, Linaker O.M. Seasonal variation in suicides and in admissions to hospital...

