The effect of deodorant use on breast cancer development has generated considerable interest in both the scientific community and the mainstream media. Primary observational studies and numerous reviews investigating the effect of regular deodorant use on breast cancer development have been undertaken. There is no consensus in this regard. Some epidemiological studies have attempted to directly address the issue of underarm cosmetic use and breast cancer. On the other hand, many studies found no association between antiperspirant use and the risk of breast cancer. There is no difference in the current use of antiperspirant/deodorant products between breast cancer patients and nonaffected matched controls. There is no scientific evidence or research data that ingredients in underarm antiperspirants or deodorants cause cancer.

Keywords: Deodorant, underarm cosmetic, breast cancer, cancer, personal care, side effects, parabens, parahydroxybenzoic acid, triclosan, aluminum-based compounds
To further supported this hypothesis, it is demonstrated that parabens, a constituent of deodorant, have estrogenic potential. Because estrogen is a major etiologic factor in the development of human breast tissue and breast cancers, Darbre proposed that parabens and other chemicals that are used in underarm cosmetics may contribute to the increasing incidence of breast cancer. Parabens have been shown to be weakly oestrogenic in vitro in a battery of tests including yeast and two human breast cancer cell lines (MCF7 and ZR-75-1). They are also oestrogenic in two mammalian species (the mouse and rat). In reviewing these reports, the point must be made that the dose levels observed to produce effects, particularly in vivo, are high (several hundred mg kg⁻¹ body weight), indicating that parabens are weak oestrogens, and there is assumed to be a large margin of safety between these doses and the exposure to these chemicals from normal underarm cosmetic use.

Often substances have been reported to be endocrine disruptors (EDs) based on the results of screening tests. Indeed, a considerable number of in vitro (sub-cellular or cellular) and in vivo (animal) screening tests for hormone-like activities of substances have been developed. However, these tests were established for the purpose of screening, i.e. in order to prioritise toxicological testing of substances that may possess hormonal activities. Given that screening tests do not identify toxicity, they cannot determine whether a substance is an ED or not. Screening tests do not even assure that a substance will produce a hormonal activity in humans or other organisms; they merely suggest that the test substance may have such a potential. Therefore, when a substance produces changes in hormone-related parameters in screening tests, this means that the test substance has a biological activity, but it does not mean that it is toxic or is an ED. This view is also supported by a recent position of the European Food Safety Agency. Indeed, there are more than a thousand natural or synthetic substances that have been found to be positive in screening assays and to possess weak hormone-like activities without causing actual toxicity at the individual or the population level. Weak hormonal activity can be advantageous, detrimental or neutral for the organism. To illustrate this: a change in room temperature, a meal or daylight may induce changes in circulating levels of hormones, such as thyroid hormones, insulin or melatonin, respectively. This does not mean that these innocuous factors should be considered to be EDs. Similarly, our food is full of hormonally active substances: for example, soy contains substances (isoflavones) that possess powerful oestrogenic activity in screening assays, which have been shown to produce adverse reproductive effects in animal toxicity studies. Thus, by definition, soy isoflavones, such as genistein, are genuine EDs. However, isoflavones do not produce oestrogen effects in humans or nonhuman primates at dietary levels. Moreover, Asian populations with a high dietary intake of soy or soy-based food tend to have lower cancer rates of reproductive organs or breast, when compared with European or US populations.

Parabens, the alkyl esters of parahydroxybenzoic acid (methylparaben, ethylparaben, propylparaben, n-butylparaben, and isobutylparaben), continue to be widely used as antimicrobial preservatives in products used by humans, including most of the cosmetics (body creams, antiperspirants, sunscreen products, lotions, or shampoos) and pharmaceuticals, but also food. Although parabens are used in many cosmetic, food, and pharmaceutical products, according to the FDA, most major brands of deodorants and antiperspirants in the United States do not currently contain parabens.

The belief that parabens build up in breast tissue was supported by a 2004 study, which found parabens in 18 of 20 samples of tissue from human breast tumors. However, this study did not prove that parabens cause breast tumors. The authors of this study did not analyze healthy breast tissue or tissues from other areas of the body and did not demonstrate that parabens are found only in cancerous breast tissue. Furthermore, this research did not identify the source of the parabens and cannot establish that the buildup of parabens is due to the use of deodorants or antiperspirants.

In 2012, Barr et al. measured paraben levels in different regions of healthy breast tissue (without cancer). Except propylparaben (which was observed at higher levels in the upper outer quadrant compared with other breast regions), the other parabens had similar concentrations in different breast regions. They also found similar concentrations of parabens in the breast tissue of women who reported to be current, past, or nonusers of underarm cosmetics. It suggests that parabens originate also from other sources than underarm cosmetics. It is possible that these chemicals enter the body via skin application of any other body care product and parenterally from food or medicines taken by patients. Several European studies have confirmed the presence of parabens in urine, blood, human milk samples, and semen in the European population. It is also possible that systemically absorbed low-dose chemicals might accumulate and result in diffusion to the breast region. However, the above clinical studies did not establish a clear correlation between parabens and breast cancer development.

Aluminum-based compounds are used as the active ingredient in antiperspirants. These compounds form a temporary plug within the sweat duct that stops the flow of sweat to the skin’s surface. Some research suggests that aluminum-based compounds, which are applied frequently and left on the skin near the breast, may be absorbed by the skin and cause estrogen-like (hormonal) effects may contribute to the development of breast cancer.

In a study, which was used a sensitive quantification technique to detect aluminum concentrations, similar aluminium concentrations were detected in the central and peripheral regions of breast tumors, and in normal tissues. In addition, it wasn’t detected significant differences in aluminum concentrations as related to the location of the breast tumor within the breast, or to other relevant tumor features such as stage, size and steroid receptor status.

Neither is there clear evidence to show use of Al containing underarm antiperspirants or cosmetics increases the risk of breast cancer.

Triclosan [TCS] is a broadspectrum antimicrobial agent that has become one of the most common additives used in deodorants. It has been hypothesized that repeated exposure of xenoestrogens, such as triclosan, to underlying breast tissue may be a risk factor. However, triclosan’s ability to behave as an estrogen antagonist also suggests that its presence in the body alongside estradiol may actually lower risk for cancer development. However, whether triclosan raises or lowers risk of cancer through estrogen-related pathways, and possible effect modification by estradiol, have not been examined in human studies.

It is important to note that Darbre (2003) has forwarded a logical and constructive hypothesis that can be tested empirically and calls for further research. It must be reaffirmed so that science moves forward by proposing hypotheses that can be tested in a controlled
manner. In forwarding such hypotheses, scientists must balance the responsibilities of alerting to potential health effects (which may be subtle, e.g. dependent on early life exposures, or cause effects in sensitive subgroups that also have a predisposition due to other factors, or indeed individual chemical effects may be masked or confounded when in a mixture) against the anxiety generated by an ultimately unfounded health scare\(^2\).

Darbre and Harvey reported two epidemiological studies have attempted to directly address the issue of underarm cosmetic (containing parabens and aluminium) use and breast cancer\(^26,2\). On the other hand, many studies found no association between antiperspirant use and the risk of breast cancer\(^2,3,12\). Among the latter, some studies found a weak positive association between antiperspirant use and breast cancer risk\(^5,13,22,24-28,30,31\). There was no difference in the current use of antiperspirant/deodorant products between breast cancer patients and nonaffected matched controls\(^28\).

Mirick \textit{et al.} \(^5\) to conduct a ‘population-based case-controlled’ study investigating the relationship between the use of products applied for underarm perspiration and the risk of breast cancer in women aged 20-74 years by retrospective interview of 813 case patients and 793 controls. They report no increase in risk of breast cancer following the use of antiperspirants/deodorants or an effect of shaving\(^9\). In 2006, researchers examined antiperspirant use and other factors among 54 women with breast cancer and 50 women without breast cancer. The study found no association between antiperspirant use and the risk of breast cancer; however, family history and the use of oral contraceptives were associated with an increased risk of breast cancer\(^7\). However, researchers at the National Cancer Institute (NCI), a part of the National Institutes of Health, are not aware of any conclusive evidence linking the use of underarm antiperspirants or deodorants and the subsequent development of breast cancer. \textit{The U.S. Food and Drug Administration (FDA)}, which regulates food, cosmetics, medicines, and medical devices, also does not have any evidence or research data that ingredients in underarm antiperspirants or deodorants cause cancer\(^22\).

In a study, in which fiftynine studies resulting from the literature search were reviewed and nineteen articles with various methodologies were selected for indepth analysis, the expert group’s conclusion coincides with those of the French, European and American health authorities. No scientific evidence to support the hypothesis was identified and therefore was not included as a risk factor in the expert group’s report. In forwarding such hypotheses, scientists must balance the responsibilities of alerting to potential health effects (which may be subtle, e.g. dependent on early life exposures, or cause effects in sensitive subgroups that also have a predisposition due to other factors, or indeed individual chemical effects may be masked or confounded when in a mixture) against the anxiety generated by an ultimately unfounded health scare\(^2\).

Finally, there are no agreed consensus of everyone in this regard. There is no evidence or research data that ingredients in underarm antiperspirants or deodorants cause cancer. There is no difference in the current use of antiperspirant/deodorant products between breast cancer patients and nonaffected matched controls.

Ethics

Peer-review: Externally peer-reviewed.

Authorship Contributions

Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: The authors declared that this study received no financial support.

References

26. Janjua NR, Mortensen GK, Andersson AM, Kongshoj B, Skakkebaek NE, Wulf HC: Systemic uptake of diethyl phthalate, dibutyl phthalate, and butyl paraben following whole-body topical application and
reproductive and thyroid hormone levels in humans. Environ Sci Technol 2007;41:5564-70.