Tc-99 HMPAO CEREBRAL SPECT IMAGING TO CONFIRM BRAIN DEATH IN PATIENTS WITH COMPLEX SPINAL AUTOMATISM

KOMPLEKS SPİNAL OTOMATİZMALI OLGULARDA BEYİN ÖLÜMÜNÜ TANIMLAMAK İÇİN TC-99 HMPAO SEREBRAL SPECT GÖRÜNÜLEME YÖNTEMİ

Dr. Ş. Ferda KAHVECİ, Dr. Ahmet BEKAR, Dr. Feyzi TAMGAÇ, Dr. Gülsen KORFALI, Dr. Eray ALPER

ÖZET
Anıtt: Bu çalışmanın amacı, spinal otomatizmiz olan beyin ölümü olsularında Tc-99 HMPAO serebral SPECT görüntüleme yöntemini değerlendirilmiş ve değerlendirilmiş.
Bulgular: Tüm hastalarda Tc-99 HMPAO görüntülemelerinde "boş kraniyum" saptandır ve SPECT çalışması ile klinik beyin ölümü kararı arasında uyumluşuk gösterilmedi.
Sonuç: Noninvasive serebral SPECT incelemesi, spinal otomatizmiz olan erişkin ve çocuk beyin ölümü olsularında tanida değerli bir yöntemdir.
Anahtar Kelimeler: Tc-99 HMPAO serebral SPECT, beyin ölümü, spinal otomatizma.

ABSTRACT
Background: The aim of this study is to evaluate the value of Tc-99 HMPAO cerebral SPECT imaging to confirm brain death in patients with complex spinal automatism.
Methods: Fifteen patients (8 female, 7 male) aged between 15 - 48 years showing spinal movements within 24-72 hours after brain death were examined with Tc-99 HMPAO cerebral SPECT.
Results: All patients demonstrated empty skull on Tc-99 HMPAO images and no contradictory case was observed between standard clinical criteria and SPECT study.
Conclusion: Non-invasive brain SPECT study is valuable to diagnose and confirm brain death with spinal automatism in adults and children.
Key words: Tc-99 HMPAO SPECT, brain death, spinal automatism

INTRODUCTION
Brain death (BD) is determined through tests showing global brain destruction or irreversible cessation of cerebral and brain-stem neuronal functions[1]. The first widely recognized criteria on defining BD were implemented by the Ad Hoc Committee of the Harvard Medical School on BD in 1968[2].
Assessment of BD has become increasingly important since the advent of organ transplantation. To confirm the BD, the evaluation of apnea testing, brain-stem reflexes, EEG, use of transcranial Doppler, contrast cerebral angiography, evoked potentials, contrast-enhanced CT, Xenon enhanced CT and radionuclide cerebral angiography procedures are being used[3-11]. Radionuclide cerebral perfusion plays an important ancillary role for the diagnosis because of its reliable, non-invasive nature[12].
Spinal automatism with its unusual movements rarely occur in BD patients. These complex movements can lead to confusion for the non-initiated personnel or the family members and may raise questions on the whole procedures and lead to cancellation of organ retrieval[3,13,14].
In this study, Technetium-99m hexamethylpropyleneamine oxide (Tc-99m HMPAO) cerebral SPECT was used to confirm the diagnosis in patients having spinal automatism after BD.
MATERIALS AND METHODS

Fifteen patients aged between 1.5 to 48 years (mean, 24.4±15.6) were taken into the study. The study included eight female and seven male patients. Table 1 shows the causes of death.

The patients fulfilled the following clinical criteria for the diagnosis of BD: coma with cerebral unresponsiveness, absence of corneal reflexes, light-fixed mydriatic pupils, absence of oculovestibular reflexes, apnea when arterial PaCO₂ was above 60 torr and ventilator was removed. The spinal movements were observed within 24-72 hours after BD in all fifteen patients. The movements were consisting of myoclonic limb movements, flexion and extention jerking movement of the upper extremities, penile erection and flexion of lower extremities. The movements lasted 5-15 seconds. No movement was observed in abdominal or facial muscles.

Tc-99m HMPAO cerebral perfusion SPECT studies were performed using a large-field-of-view single-head rotating gamma camera (Starcam 3200 XR, GE Medical Systems, Milwaukee, WI) equipped with a low energy all-purpose, parallel-hole collimator. SPECT acquisition procedure started 15-20 minutes after intravenous injection of 1000-1100 MBq of Tc-99m HMPAO in adults; a minimum dose of 400 MBq was used in children (Ceretec, Amersham, UK). A 20% symmetric window centered at 140 keV was used for photon detection. A total of 64 projections were acquired over 360-degree rotation, 30 seconds per frame. Filtered back projection was used for image reconstruction after preprocessing the data using a Butterworth filter. No attenuation correction was made. Transaxial, coronal and sagittal plane images were pictured. Images were interpreted by visual analysis with consensus of two readers (FT, E.A.).

RESULTS

All patients demonstrated empty skull on Tc-99m HMPAO images. Standard clinical criteria and SPECT studies showed good correlation with no conflicting results (Fig.1). Following this confirmation the patients were declared as BD in order to be organ donors.

Figure 1: Empty skull: No uptake of Tc-99m HMPAO in the cerebrum, cerebellum and brain-stem consistent with brain death.

<table>
<thead>
<tr>
<th>No</th>
<th>Age</th>
<th>Sex</th>
<th>Cause of Brain Death</th>
<th>Past History</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>47</td>
<td>M</td>
<td>SAH</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>F</td>
<td>IH</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>34</td>
<td>M</td>
<td>IH</td>
<td>HT</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>F</td>
<td>SAH</td>
<td>PET</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>M</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.5</td>
<td>M</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>35</td>
<td>M</td>
<td>SH</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>F</td>
<td>CO Intox</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>22</td>
<td>F</td>
<td>IH</td>
<td>PET</td>
</tr>
<tr>
<td>10</td>
<td>24</td>
<td>M</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>36</td>
<td>M</td>
<td>SH</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>28</td>
<td>M</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>22</td>
<td>F</td>
<td>IH</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>48</td>
<td>F</td>
<td>SAH</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>F</td>
<td>TBD</td>
<td></td>
</tr>
</tbody>
</table>


DISCUSSION

Patients with unusual movements, after declaration of BD, have been described previously(3, 13,14). An unequivocal early diagnosis of BD is necessary in comatose patients who may be organ donors and this involves complicated moral, ethical, medical and legal considerations(15, 16).

As seen in our patients these movements occurred spontaneously, after mechanical stimulation following neck flexion, or noxious stimulation of supraclavicular area(3). While some authors suggested that these motor manifestations reflected the partial activity in agonal spinal cord neurons, others claimed that unusual movements were likely a reflection of the physiological potential of spinal cord. The movements may have been generated by neurons in the rostral regions of spinal cord(3, 13, 16). However, spinal automatism occurs as a result of a spinal arc reflex and in no way negates the diagnosis of BD.

The diagnostic criteria rely on three factors to determine the BD: firstly, irreversibility of brain damage, secondly, absence of the corneal reflexes, light-fixed mydriatic pupils, absence of brain-stem reflexes (oculovestibular, oculoccephalic reflexes), including apnea; and thirdly, electro
cerebral silence on an EEG or non filling of cerebral vessels on a four-vessel angiogram. These criteria have to be ful-
filled in BD patients having no drug intoxication, hypoten-
sive metabolite disturbances, shock, peripheral nerve and
muscle dysfunction due to neuromuscular blockade or
hypothermia (below 35°C)(15, 16, 17).

The measurement of cerebral blood flow may constitute
a decisive diagnostic criteria for BD(11, 18, 19). As a matter
of fact, a reliable assessment of cerebral circulatory arrest is
to be considered as the gold standard, since this is an
important phenomenon of the whole brain. Thus, the com-
mon BD criteria for many countries is to consider, at least in
particular cases, the determination of cerebral blood
flow(20).

One of the cerebral blood flow tests, contrast medium
angiography, has been widely used in the past, but it is an
invasive and a technically complex procedure that requires
patient’s transfer to an angiography unit and positioning on
the table with the risk of clinical deterioration(4, 21, 22).

Another cerebral blood flow test, radionuclide cerebral
angiography with Tc-99m DTPA has been proposed as an
alternative method for the evaluation of brain perfusion
showing a good correlation with four-vessel angiography(4,
18, 21, 22). The patients need to be transported to a nuclear
medicine unit and requires positioning on the table with the
risk of clinical deterioration too. But, it is the invasive nature
of angiography that differentiates it from nuclear medicine
procedures. Radionuclide method has been widely accept-
ed, although it has inherent difficulties of interpretation in
cases of poor bolus quality, severely reduced, but not
absent brain perfusion and in some patients with
hematomas and trauma. In addition, radionuclide perfusion
scintigraphy only assesses hemispheric brain perfusion with
poor visualization of the posterior fossa and brain stem(5,
12, 23).

Tc-99m HMPAO is a neutral, lipophilic radiopharmaceu-
tical that crosses the intact blood brain barrier and is
trapped by brain tissue in proportion to regional perfu-
sion(12, 19, 24, 25). Several reports exist about the usefulness
of Tc-99m HMPAO in the diagnosis of BD(4, 18, 26, 27).
Tc-99m HMPAO brain uptake has been reported in patients
thought to be BD on clinical grounds and who subsequently
recovered(27). The patients who did not have BD showed
HMPAO uptake at least in the brainstem(4).

In our study all patients showing empty skull were con-
formed as BD by standard clinical criteria, with no contradic-
tory cases in the SPECT study.

The advantages of Tc-99m HMPAO cerebral perfusion
scintigraphy over conventional agents such as Tc-99m glu-
coheptonate or DTPA have been discussed in the literature.
Firstly, it does not depend on the adequacy of the bolus
injection to determine BD. Although these radiopharmaceu-
ticals are adequate in the vast majority of patients, good
bolus is critical and this point is more difficult to achieve in
small children. Secondly, there is no complete agreement
about the significance of persisting dural venous sinus activ-
ity. These features have to be taken into consideration if
flow agents are used. Thirdly, Tc-99m HMPAO allows visual-
ization of the posterior fossa perfusion that may be present
in the absence of supratentorial cerebral blood flow. In
addition, the test is easier to interpret in patients with
severely decreased cerebral blood flow. Finally, it displays
regional blood flow in a more detailed fashion, since cortical
uptake of HMPAO depends on cerebral blood flow(12, 19).

However, there are also two disadvantages of this
method. Firstly, higher cost of the Tc-99m HMPAO, although
it is still less expensive than the total cost of a repeat study
using other flow agents. Secondly, the patients need to be
transferred to a nuclear medicine unit if a portable gamma
camera is not available(18, 19).

In conclusion, brain SPECT study is a valuable, non-inva-
sive test for diagnosing and confirming BD with spinal
automatism in adults and children.

REFERENCES
1. Bernat JL. Brain death occurs only with destruction of the
cerebral hemispheres and the brain stem. Arch Neurol.

2. Beecher HK. A definition of irreversible coma: report of
the Ad Hoc Committee of the Harvard Medical
School to examine the definition of brain death. JAMA.

3. Tuirmel A, Roux A, Bojanowski WM. Spinal man after
declaration of brain death. Neurosurgery. 1991; 28:298-
302.

4. Riva A, Gonzales FM, Llamas-Elvira JM, et al. Diagnosis of
brain death: Superiority of perfusion studies with
Tc-99m HMPAO over conventional radionuclide

angiographic determination of cerebral blood flow. A cor-
1975; 347 (Suppl); 119-129.

6. Jeret JS, Benjamin JL. Risk of hypotension during

7. Ropper AH, Kennedy SK, Russell L. Apnea testing in
the diagnosis of the brain death: clinical and physiologic

brain-stem response in determination of brain death. Arch
Otolaryngol. 1985; 111; 613-620.

technique with rapid CT scanning a reliable diagnostic
tool for the determination of brain death. Neuroradiology.

blood flow by Xenon-enhanced computed tomography:
11. Pistoia F, Johnson DW, Darby JM, et al. The role
of Xenon CT measurements of cerebral blood flow in the
clinical determination of brain death. AJNR. 1991; 12: 97-
103.

Cerebral perfusion imaging with Technetium-99m
HMPAO in brain death and severe central nervous system

13. Ropper AH. Unusual spontaneous movements in


338-344.


17. Royal Colleges and Faculties of the United
Kingdom. Diagnosis of brain death. BMJ 1976; 2: 1187-
1188.

comparison of Tc-99m DTPA and Tc-99m HMPAO for

HMPAO SPECT in the diagnosis of brain death. Intensive
Care Med. 1998; 24: 911-917.

20. Report of the Medical Consultants on the diagnosis
of Death to the President’s Commission on the Study of
Ethical Problems in Medicine and biomedical and
Behavioral Research. Guidelines for the determination of

Secondary insults during intrahospital transport of head-

insults during intrahospital transport of neurosurgical

23. Korein J, Braunstein P, George A. Brain death I.
Angiographic correlation with radioisotopic bolus tech-
ique for the evaluation of critical deficit of cerebral blood

24. Sharp PF, Smith FW, Gemmill HG. Technetium-
99m HMPAO stereovisitors as potential agents for imaging
regional blood flow: human volunteer studies. J Nucl

25. Neirinckx RD, Canning LR, Piper IM. Tc-99m
HMPAO: A new radiopharmaceutical for SPECT imaging

Cerebral perfusion imaging with technetium-99m HMPAO
following cerebral trauma. Initial experience. Clin Nucl

Clinical use of technetium-99m HMPAO for determination