Emergency endovascular treatment of a ruptured external carotid artery pseudoaneurysm caused by a cervical stab wound: A case report and literature review

Junya Tsurukiri, M.D.,† Eitaro Okumura, M.D.,† Hiroshi Yamanaka, M.D.,† Hiroyuki Jimbo, M.D.,‡ Akira Hoshiai, M.D.†

†Department of Emergency and Critical Care Medicine, Tokyo Medical University Hachioji Medical Center, Tokyo-Japan
‡Department of Neurosurgery, Tokyo Medical University Hachioji Medical Center, Tokyo-Japan

ABSTRACT

The formation of external carotid artery (ECA) pseudoaneurysms caused by stab wounds is a rare vascular anomaly. Although the surgical exploration of the ECA segment is the standard treatment, endovascular treatment (EVT) can be considered if there is difficulty in identifying the source of bleeding in the injured regions that are difficult to operatively access. Here we treated a young patient who had hemorrhagic instability with hemorrhage-induced coagulopathy caused by a zone III cervical stab wound with a pseudoaneurysm from the main trunk of the ECA; the patient underwent EVT and successful hemostasis. A literature review based on the data available on PubMed was conducted, and 15 published reports of 82 penetrating ECA injuries treated by EVT were identified. We concluded that EVT appears to be an effective surgical alternative for patients with hemorrhage-induced coagulopathy caused by a ruptured ECA pseudoaneurysm after a cervical stab wound.

Keywords: Bleeding; injury; interventional radiology; penetrating; shock.

INTRODUCTION

Pseudoaneurysms occur as a result of total or partial disruption of the arterial wall, with the formation of a hematoma and organization. Trauma can cause disruption of the vessel wall, with extravasation of blood and formation of a hematoma and pseudo capsule that can expand because of blood pressure. Carotid artery (CA) injuries occur more commonly due to blunt trauma, and CA pseudoaneurysms are often the result of blunt trauma in zone II of the neck. Penetrating CA injuries have been reported to account for only 3% of arterial injuries. Although the internal CA is more commonly injured during trauma, there are few reports on ECA injuries that have lower incidences. External CA (ECA) injuries caused by cervical stab wounds sometimes become life threatening, and the formation of ECA pseudoaneurysms caused by stab wounds is a rare vascular anomaly. There are insufficient data regarding endovascular treatment (EVT) of penetrating ECA pseudoaneurysms.

We report the case of a young patient with hemorrhagic instability caused by cervical stab wounds and who underwent EVT for a ruptured ECA pseudoaneurysm.

CASE REPORT

A 25-year-old man was admitted to our emergency department with hemorrhagic shock after a cervical stab wound. His past medical history included developmental disability. His physical examination revealed a Glasgow Coma Scale score of 7 (eye = 2, verbal = 1, and motor = 4), blood pressure of 63/20 mmHg, and heart rate of 91 beats/min. Bleeding from two areas of a 6-cm stab wound at zone III of his left neck was continuous. The patient was hemodynamically unstable and immediately received initial trauma resuscitation. The hemoglobin level, hematocrit, prothrombin time/international normalized ratio, and lactate level were 6.8 g/dL [reference range (RR), 13.5–17.5 g/dL], 19% (RR, 39%–52%), 1.66, and...
6.2 mmol/L (RR, 2.0–5.0 mmol/L), respectively. After the rapid administration of Ringer’s lactate solution and blood transfusion, his blood pressure improved. Contrast-enhanced computed tomography (CECT) of the neck revealed remarkable bleeding and demonstrated contrast medium extravasation and a pseudoaneurysm arising from the left ECA (Fig. 1a). After CECT, his blood pressure fell to 86/36 mmHg. We believed that it would be difficult to secure and maintain a visual field during surgery for the patient in this condition; therefore, we decided to perform EVT for achieving hemostasis.

EVT was performed under general anesthesia. Angiography revealed pseudoaneurysm formation with contrast medium extravasation from the left ECA distal to the origin of the facial artery (Fig. 1b). The distal trunk of the ECA was laterally supplied by branches of the ascending pharyngeal artery. A microcatheter (Headway, Termo, Tokyo, Japan) was selectively placed into the center of the pseudoaneurysm; this was followed by coil embolization using 4 mm × 6 cm, 3.5 mm × 8 cm, and 3.5 mm × 8 cm microcoils (ED Coil Complex, Kaneka Medics Corporation, Osaka, Japan) deployed in the pseudoaneurysm. Furthermore, 0.6 mL of N-butyl cyanoacrylate (NBCA) (Histoacryl; Braun, Melsungen, Germany), which was mixed with iodized oil (Lipiodol; Andre Guerbet, Aulnay-sous-Bois, France) at a ratio of 1:1, was carefully injected because bleeding was continuous (Fig. 1c). EVT was successful, and the pseudoaneurysm was undetectable thereafter (Fig. 1d). A total of 1600 mL of red blood cells and 800 mL of fresh frozen plasma was administered within 24 h. Three days later, none of the images revealed dilatation or disruption of the ECA wall (Fig. 1e, f). The patient was discharged from the hospital 14 days after admission without any complications (Fig. 1g).

DISCUSSION

In a search of the literature using Medline, 15 published reports of 82 penetrating ECA injuries that underwent EVT were identified (Table 1). Twenty-four patients had pseudoaneurysms at the ECA, and gunshots were the main cause of pseudoaneurysm formation in the ECA. The ECA and its branches are protected from external force by soft tissues until the artery emerges at the superior temporal line of the skull. Although injuries to the branches of the ECA are considerably more common than those to the main trunk of the ECA, the main trunk of the ECA is one of the most common parent arteries pertaining to the pseudoaneurysm. Bleeding from wounds is the main clinical sign after injury. Upon reviewing the existing literature, almost all patients underwent EVT using fibered coil embolization and showed good out-
<table>
<thead>
<tr>
<th>Authors</th>
<th>Published year</th>
<th>n</th>
<th>Age</th>
<th>Sex</th>
<th>Type of trauma</th>
<th>Clinical presentation</th>
<th>Hemodynamics</th>
<th>Intervals after injury</th>
<th>Affected artery</th>
<th>Existing PA</th>
<th>Treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wang et al.⁴¹</td>
<td>2015</td>
<td>9</td>
<td>16–25</td>
<td>M (7), F (1)</td>
<td>Stab wound</td>
<td>Pulsatile mass (6), bleeding (1)</td>
<td>Stable (8)</td>
<td>2 days-5 months</td>
<td>ECA (3), IMA (2), STA (2), CA (1)</td>
<td>8/8</td>
<td>Fibred coils with (5), or without (3) detachable coils</td>
<td>Survived (8)</td>
</tr>
<tr>
<td>Yevich et al.⁶</td>
<td>2014</td>
<td>7</td>
<td>20–40</td>
<td>M (7)</td>
<td>Gunshot (7)</td>
<td>Bleeding (6), Unknown (1)</td>
<td>N/A</td>
<td>N/A</td>
<td>IMA (3), STA (2), CA (1)</td>
<td>1/1</td>
<td>PA: Coils</td>
<td>Laceration: NBCA (4), Survived (6)</td>
</tr>
<tr>
<td>Kwon et al.⁷</td>
<td>2014</td>
<td>1</td>
<td>20</td>
<td>M</td>
<td>Pipe penetration</td>
<td>Bleeding</td>
<td>Stable</td>
<td>Immediately</td>
<td>IMA</td>
<td>0/1</td>
<td>Particles</td>
<td>Survived</td>
</tr>
<tr>
<td>Lee et al.⁸</td>
<td>2013</td>
<td>1</td>
<td>20</td>
<td>M</td>
<td>Gunshot</td>
<td>Pulsatile mass</td>
<td>Stable</td>
<td>9 days</td>
<td>STA</td>
<td>1/1</td>
<td>NBCA</td>
<td>Survived</td>
</tr>
<tr>
<td>Inaba et al.⁹</td>
<td>2012</td>
<td>2</td>
<td>N/A</td>
<td>N/A</td>
<td>Stab wound (2)</td>
<td>N/A</td>
<td>Stable (2)</td>
<td>N/A</td>
<td>ECA (no details)</td>
<td>1/1</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Cox et al.¹⁰</td>
<td>2007</td>
<td>8</td>
<td>N/A</td>
<td>N/A</td>
<td>Gunshot (2)</td>
<td>None (3), bleeding (3), pulsatile mass (1), swelling (1)</td>
<td>N/A</td>
<td>N/A</td>
<td>IMA (3), ECA (2), FA (2), LA (1)</td>
<td>8/8</td>
<td>Coils (7), Gelatin sponge (1)</td>
<td>Survived (8)</td>
</tr>
<tr>
<td>Fox et al.¹¹</td>
<td>2006</td>
<td>2</td>
<td>N/A</td>
<td>M (2)</td>
<td>Gunshot or stab wound</td>
<td>None</td>
<td>Stable (2)</td>
<td>Delayed</td>
<td>LA (1), ECA (1)</td>
<td>2/2</td>
<td>Fibered coils</td>
<td>Survived (2)</td>
</tr>
<tr>
<td>Ferguson et al.¹²</td>
<td>2005</td>
<td>2</td>
<td>N/A</td>
<td>N/A</td>
<td>Gunshot or stab wound</td>
<td>Bleeding</td>
<td>Stable (2)</td>
<td>N/A</td>
<td>The branches of ECA</td>
<td>0/2</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Krishnan et al.¹³</td>
<td>2004</td>
<td>1</td>
<td>41</td>
<td>M</td>
<td>Gunshot</td>
<td>Bleeding</td>
<td>Stable</td>
<td>2 days</td>
<td>IMA</td>
<td>1/1</td>
<td>Fibered coils</td>
<td>Survived</td>
</tr>
<tr>
<td>Bynoe et al.¹⁴</td>
<td>2003</td>
<td>1</td>
<td>N/A</td>
<td>N/A</td>
<td>Blast</td>
<td>Bleeding</td>
<td>N/A</td>
<td>N/A</td>
<td>IMA</td>
<td>0/1</td>
<td>N/A</td>
<td>Survived</td>
</tr>
<tr>
<td>Germiller et al.¹⁵</td>
<td>2001</td>
<td>1</td>
<td>30</td>
<td>M</td>
<td>Gunshot</td>
<td>Bleeding</td>
<td>N/A</td>
<td>5 weeks</td>
<td>FA</td>
<td>1/1</td>
<td>Microcoils</td>
<td>Survived</td>
</tr>
<tr>
<td>Borsa et al.¹⁶</td>
<td>1999</td>
<td>7</td>
<td>20–61</td>
<td>M (7)</td>
<td>Gunshot</td>
<td>Bleeding</td>
<td>Stable (7)</td>
<td>Immediately</td>
<td>IMA (6), FA (5), LA (3), STA (1)</td>
<td>0/8</td>
<td>Gelatin sponge (6), PVA (1), microcoils (3)</td>
<td>Survived (6), Dead (1)</td>
</tr>
<tr>
<td>Sclafani et al.¹⁷</td>
<td>1996</td>
<td>32</td>
<td>N/A</td>
<td>N/A</td>
<td>Gunshot or stab wound</td>
<td>N/A</td>
<td>Stable (32)</td>
<td>N/A</td>
<td>ECA (10), IMA (10), FA (10), LA (2)</td>
<td>N/A</td>
<td>Gelfan sponge or fibered coils</td>
<td>Survived (30)</td>
</tr>
<tr>
<td>Montalvo et al.¹⁸</td>
<td>1996</td>
<td>1</td>
<td>N/A</td>
<td>N/A</td>
<td>Gunshot or stab wound</td>
<td>N/A</td>
<td>Stable</td>
<td>N/A</td>
<td>OA</td>
<td>1/1</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Sclafani et al.¹⁹</td>
<td>1985</td>
<td>8</td>
<td>16–52</td>
<td>N/A</td>
<td>Gunshot or stab wound</td>
<td>Bleeding</td>
<td>N/A</td>
<td>N/A</td>
<td>ECA (1), IMA (5), FA (2)</td>
<td>N/A</td>
<td>Gelfan sponge or fibered coils</td>
<td>Survived (8)</td>
</tr>
<tr>
<td>Present case</td>
<td>2016</td>
<td>1</td>
<td>25</td>
<td>M</td>
<td>Stab wound</td>
<td>Bleeding</td>
<td>Unstable</td>
<td>Immediately</td>
<td>ECA</td>
<td>1/1</td>
<td>Detachable coils+NBCA</td>
<td>Survived</td>
</tr>
</tbody>
</table>

ECA: External carotid artery; FA: Facial artery; IMA: Internal maxillary artery; LA: Lingual artery; N: Number of ICA injuries; N/A: None available; NBCA: N-butyl cyanoacrylate; PA: Pseudoaneurysm; PVA: Polyvinyl alcohol; STA: Superficial temporal artery; OA: Occipital artery.
comes. However, re-bleeding and facial nerve palsy after EVT were also reported.[29]

Although the standard treatment is surgical ligation and resection of the ECA segment without the need for reconstruction, EVT can be considered if there is difficulty in identifying the source of bleeding for injured regions that are difficult to operatively access, particularly in deeply located vessels injured by cervical stab wounds. The development of endovascular equipment has contributed to the acceptance of EVT as an effective and safe treatment, and various embolic materials are now available. Gelatin sponge particles are divided into temporary embolic agents. Alternatively, microcoils and NBCA are divided into permanent embolic agents. The use of gelatin sponge particles or coils involves the physical blocking of blood flow with thrombus formation in the vascular lumen. NBCA is routinely used by mixing it with iodized oil to make it radiopaque, and an operator can adjust the extent of embolization by changing the mixing ratio. The use of NBCA in an animal model of hemorrhage-induced coagulopathy and various nontraumatic situations was demonstrated.[21,22] An 0.010-inch ED Coil Complex is a ready available electrical detachable coil and has a more complex outward shape and softer flexibility than conventional helical ED coils. We used these coils because the pseudoaneurysm was continuously bleeding and very fragile; coil deployment was successful. Furthermore, we added the proximal ECA occlusion using NBCA with technically success.

Conclusion

EVT appears to be an effective surgical alternative for patients with hemorrhage-induced coagulopathy caused by ruptured ECA pseudoaneurysms after cervical stab wounds.

Consent

Written informed consent was obtained from the next of kin of the patient for publication of this case report and accompanying images.

Conflict of interest: None declared.

REFERENCES

15. Germiller JA, Myers LL, Harris MO, Bradford CR. Pseudoaneurysm of the proximal facial artery presenting as opharyngeal hemorrhage. Head Neck 2001;23:259–63. [CrossRef]
17. Sclafani AP, Sclafani SJ. Angiography and transcatheter arterial embolization of vascular injuries of the face and neck. Laryngoscope 1996;106:168–73. [CrossRef]
Servikal penetran yaranın neden olduğu eksternal karotis arter psödoanevrizması rüptürünün acil endovasküler tedavisi: Bir olgu sunumu ve literatürün gözden geçirilmesi

Dr. Junya Tsurukiri, Dr. Eitaro Okumura, Dr. Hiroshi Yamanaka, Dr. Hiroyuki Jimbo, Dr. Akira Hoshiai

1Tokyo Tıp Üniversitesi Hachioji Tıp Merkezi, Acil ve Kritik Bakım Kliniği, Tokyo-Japonya
2Tokyo Tıp Üniversitesi Hachioji Tıp Merkezi, Nöroşirurji Kliniği, Tokyo-Japonya

Anahtar sözcükler: Boyun; girişimsel radyoloji; kanama; penetran; silahla yaralanma; şok; yaralanma.