Does protocatechuic acid, a natural antioxidant, reduce renal ischemia reperfusion injury in rats?

Melih Yüksel, M.D.,1 Murat Yıldar, M.D.,2 Murat Başbuğ, M.D.,2 Faruk Çavdar, M.D.,2 Öztekin Çıkman, M.D.,3 Hasan Akşit, M.D.,4 Figen Aslan, M.D.,5 Dilek Akşit, M.D.6

1Department of Emergency Medicine, Balıkesir University Faculty of Medicine, Balıkesir-Turkey
2Department of General Surgery, Balıkesir University Faculty of Medicine, Balıkesir-Turkey
3Department of General Surgery, Çanakkale Onsekiz Mart University Faculty of Medicine, Çanakkale-Turkey
4Department of Biochemistry, Balıkesir University Faculty of Veterinary, Balıkesir-Turkey
5Department of Pathology, Balıkesir University Faculty of Medicine, Balıkesir-Turkey
6Department of Pharmacology and Toxicology, Balıkesir University Faculty of Veterinary, Balıkesir-Turkey

ABSTRACT

BACKGROUND: Protocatechuic acid (PCA), which has antioxidant property, is a simple phenolic compound commonly found in many plants, vegetables, and fruits, notably in green tea and almonds. Present study was an investigation of the effects of PCA on rat kidney with ischemia/reperfusion (IR) injury.

METHODS: Sprague-Dawley rats were randomly divided into 4 groups: (1) Sham, (2) Renal IR, (3) Renal IR+Vehicle, and (4) Renal IR+PCA. Renal reperfusion injury was induced by clamping renal pedicle for 45 minutes after right nephrectomy was performed, followed by reperfusion for 3 hours. Dose of 80 mg/kg PCA was intraperitoneally administered to 1 group immediately before renal ischemia; 33% polyethylene glycol was used as vehicle. Total antioxidant status (TAS), malondialdehyde (MDA), superoxide dismutase (SOD), tumor necrosis factor alpha (TNF-α), and interleukin-6 levels were measured in blood and kidney tissue samples taken from sacrificed rats. Kidney tissue samples were examined and scored histopathologically. Terminal deoxynucleotidyltransferase-mediated dUTP digoxigenin nick end labeling assay method was used to detect apoptotic cells.

RESULTS: It was found that PCA significantly reduced serum MDA, TNF-α, and kidney MDA levels, while it increased serum and kidney TAS and SOD levels. Histopathological scores were significantly higher for the group given PCA.

CONCLUSION: PCA reduced oxidative stress and can be used as an effective agent in treatment of renal IR injury.

Keywords: Antioxidants; ischemia reperfusion injury; malondialdehyde; protocatechuic acid; reactive oxygen species.
studies that PCA particularly reduces acute lung injury and cerebral ischemia, as well as IR injury in the liver and spleen. This study was investigation of effects of PCA on renal IR injury, which has not been discussed in previous studies.

MATERIALS AND METHODS
Animal Testing and Treatment Procedures
Before the study was conducted, the approval of the Çanakkale 18 Mart University animal ethics committee was granted. Unlimited access to food and water was provided to all animals and they were treated humanely, according to the guidelines and the rules of the US National Institutes of Health regarding laboratory animal care and use of animals throughout the protocol.

Total of 24 male Sprague-Dawley rats weighing approximately 250 to 300 g each were randomly divided into 4 groups: (1) Sham (n=8), (2) Renal IR (n=8), (3) Renal IR+Vehicle (n=8), and (4) Renal IR+PCA (n=8). Anesthesia was administered to experimental subjects via intramuscular ketamine/xylazine (Ketalar; Pfizer, Inc., NY, NY, USA/Rompun; Bayer AG, Leverkusen, Germany) 90/10 mg/kg. Renal reperfusion injury was induced through reperfusion performed for 3 hours following right nephrectomy and clamping the left renal pedicle for 45 minutes. Next, 80 mg/kg dose of PCA ethyl ester (Sigma-Aldrich, Corp., St. Louis, MO, USA), which is used therapeutically, was administered intraperitoneally to PCA group immediately before development of renal ischemia. As PCA was solid, saline with 33% polyethylene glycol was used as vehicle. During laparotomy, 50 mL/kg warm 0.9% sodium chloride was added to the abdominal cavity, and 3 hours after laparotomy closure, all rats were sacrificed. Total antioxidant status (TAS), malondialdehyde (MDA), superoxide dismutase (SOD), tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6) levels in blood samples and kidneys were analyzed. Kidney tissue samples were used for histopathological scoring. Terminal deoxynucleotidyltransferase-mediated dUTP digoxigenin nick end labeling (TUNEL) assay was used to detect apoptotic cells.

Antioxidant Enzymes, Pro-Inflammatory Cytokines, and MDA Measurement
Blood samples taken from rats were incubated for 2 hours at room temperature to allow for clotting. Samples were centrifuged at 2500 g for 15 minutes at 4°C and then kept at −20°C. Lipid peroxidation was examined via procedure demonstrated by Yoshioka.[24] During the procedure, MDA, which is the final product of peroxidation of fatty acids, reacts with TBA at 532 nm to form a colored compound with maximum absorbance. The method developed by Rel to measure antioxidative influence of the sample against the potent reactive radical reactions started by the reduced hydroxyl radical was utilized to evaluate TAS of the serum. Data were expressed as mmol Trolox equiv/L. In order to assess SOD activity in serum, it was incubated with xantine oxidase solution for 1 hour at 37°C. Absorbance was measured at 490 nm to allow for creation of superoxide anions. Activity of SOD was considered inhibition of chromagen decrease. Superoxide anion concentration decreases in presence of SOD, which leads to less colorimetric signal. SOD activity was expressed as percentage.

To assess serum concentration of TNF-α and IL-6, double sandwich enzyme-linked immunosorbent assay kits (Thermo Fisher Scientific, Inc., Waltham, MA, USA) were used. ELISA plates were evaluated using microplate reader at 450 nm.

Histopathological Examination
For histopathological examination, tissue samples from 4 groups were identified using 10% formalin and routine procedures were performed. Sections 5-μm thick were taken from paraffin-embedded tissue and stained with hematoxylin eosin. Light microscope was used to examine hydroptic degeneration, tubular dilation, pyknotic nucleus, cell caste in tubulin (debris), and congestion in kidney tissue. Each parameter was scored semi-quantitatively from 0 to 3, i.e., no pathology: 0 points, focal: 1 point, multifocal: 2 points, and diffuse: 3 points.

TUNEL Staining to Detect Apoptotic Cells
Apoptotic cells in kidneys were identified by doctor who was blinded to group assignments using TUNEL assay. TUNEL assay kit was used according to the manufacturer’s instructions (ApopTag Peroxidase In Situ Apoptosis Detection Kit, S7101-KIT; Merck Millipore, Corp., Billerica, MA, USA).

Statistical Analysis
Results were expressed as mean±SD. Data were analyzed using SPSS 20.0 (IBM, Corp., Armonk, NY, USA) software. Analysis of variance was used to compare all groups. In addition, Tukey’s range test was used as post hoc analysis. P value of 0.05 or less was considered statistically significant.

RESULTS
Effects of PCA on TAS, SOD, and MDA Level
Serum TAS and SOD values, measured at 2.67±0.23 and 64.51±9.62, respectively, in the Sham group, were significantly lower in the Renal IR group (TAS: 1.78±0.23; SOD: 48.15±4.03; p<0.001, p<0.001). These values were elevated in Renal IR group compared with groups given vehicle before renal IR; however, this change was not statistically significant (TAS: 1.88±0.27; SOD: 49.17±2.11; p=0.856, p=0.989). Values were significantly greater in group given PCA compared with Renal IR group (TAS: 2.36±0.12, SOD: 57.37±3.53; p=0.001, p=0.45). Serum MDA value, with mean score of 10.82±0.75 in the Sham group, was significantly greater in Renal IR group (17.00±2.93; p<0.001). That value was lower in groups given vehicle before renal IR, but decrease was not significant (15.96±1.96; p=0.760). In group given PCA prior to renal IR, it was found that value was significantly lower compared with Renal IR group (11.65±0.68; p<0.001) (Table 1, Figure 1).
Kidney TAS and SOD values, measured at 1.30±0.12, and 58.06±4.70, respectively, in Sham group, were significantly lower in Renal IR group (TAS: 0.86±0.14, SOD: 38.14±4.13; p<0.001, p<0.001). These values were greater in the group given PCA prior to renal IR; however, change was not significant (TAS: 0.91±0.18, SOD: 39.92±4.90; p=0.882, p=0.878). Values were significantly greater in group given PCA compared with Renal IR group (1.10±0.12, SOD: 47.91±2.27; p=0.014, p=0.003). Kidney MDA value, with mean of 13.09±1.11 for Sham group, was significantly greater in Renal IR group (19.24±2.38; p<0.001). There was no significant difference seen in groups given vehicle before renal IR (18.23±2.31; p=0.793). Values were observed to be significantly lower in the group given PCA compared with Renal IR group (14.50±1.42; p=0.002) (Table 2, Figure 1).

Effects of PCA on TNF-α and IL-6 Levels

Serum TNF-α and IL-6 levels, with mean measurement of 78.55±7.63 and 22.92±5.64, respectively, in Sham group, were significantly greater in Renal IR group (TNF-α: 104.02±8.98, IL-6: 34.34±2.47; p<0.001, p<0.001). These values were greater in groups given vehicle prior to renal IR compared with Renal IR group. However, the increase in these markers was not significant (TNF-α: 101.82±10.69, IL-6: 35.79±2.68; p=0.968, p=0.898). In addition, in group given PCA before renal IR, TNF-α levels were found to be significantly lower: IL-6

Table 1. The mean serum TAS, MDA, SOD, TNF-α, and IL-6 level in all experimental groups

<table>
<thead>
<tr>
<th>Groups</th>
<th>TAS (mmol trolox Equiv/L) Mean±SD</th>
<th>MDA (µmol/L) Mean±SD</th>
<th>SOD (% inhibition) Mean±SD</th>
<th>TNF-α (pg/mL) Mean±SD</th>
<th>IL-6 (pg/mL) Mean±SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sham</td>
<td>2.67±0.23</td>
<td>10.82±0.75</td>
<td>64.5±9.62</td>
<td>79.55±7.63</td>
<td>22.92±5.64</td>
</tr>
<tr>
<td>Renal IR</td>
<td>1.78±0.23</td>
<td>17.00±2.93</td>
<td>48.15±4.03</td>
<td>104.02±8.98</td>
<td>34.34±2.47</td>
</tr>
<tr>
<td>Vehicle</td>
<td>1.88±0.27</td>
<td>15.96±1.96</td>
<td>49.17±2.11</td>
<td>101.82±10.69</td>
<td>35.79±2.68</td>
</tr>
<tr>
<td>PCA</td>
<td>2.36±0.12</td>
<td>11.65±0.68</td>
<td>57.37±3.53</td>
<td>85.97±5.02</td>
<td>30.43±2.71</td>
</tr>
</tbody>
</table>

*Compared with Sham group; p<0.05. †Compared with Renal IR Group; p<0.05.

IL-6: Interleukin-6; IR: Ischemia/reperfusion; MDA: Malondialdehyde; PCA: Protocatechuic acid; SOD: Superoxide dismutase; TAS: Total antioxidant status; TNF-α: Tumor necrosis factor alpha.
levels were also found to be lower, but the decrease was not significant (TNF-α: 85.97±5.02, IL-6: 30.43±2.71; p=0.006, p=0.271) (Table 1, Figure 1).

Kidney TNF-α and IL-6 levels, having mean score of 3.55±0.46 and 2.10±0.18, respectively, in Sham group, were significantly elevated in Renal IR group (TNF-α: 4.36±0.43, IL-6: 2.50±0.14; p=0.010, p=0.011). Values had increased in groups given vehicle prior to renal IR compared with Renal IR group; however, increase in these markers was not significant (TNF-α: 4.56±0.38, IL-6: 2.61±0.16; p=0.794, p=0.750). In group given PCA before renal IR, TNF-α and IL-6 levels were lower, but decrease was not significant (TNF-α: 3.78±0.26, IL-6: 2.29±0.31; p=0.080, p=0.311) (Table, Figure 1).

Effects of PCA on Kidney Tissue

During examination with light microscope of tissue sections stained with hematoxylin-eosin, hydropic degeneration in tubule epithelium, tubular dilation, pyknotic nucleus, cell caste

Table 2. The mean kidney TAS, MDA, SOD, TNF-α and IL-6 level in all experimental groups

<table>
<thead>
<tr>
<th>Groups</th>
<th>TAS (mmol trolox Equiv./L) Mean±SD</th>
<th>MDA (µmol/L) Mean±SD</th>
<th>SOD (% inhibition) Mean±SD</th>
<th>TNF-α (pg/mL) Mean±SD</th>
<th>IL-6 (pg/mL) Mean±SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sham</td>
<td>1.30±0.12</td>
<td>13.09±1.11</td>
<td>58.06±4.70</td>
<td>3.55±0.46</td>
<td>2.10±0.18</td>
</tr>
<tr>
<td>Renal IR</td>
<td>0.86±0.14*</td>
<td>19.24±2.38</td>
<td>38.14±4.13</td>
<td>4.36±0.43*</td>
<td>2.50±0.14*</td>
</tr>
<tr>
<td>Vehicle</td>
<td>0.91±0.18*</td>
<td>18.23±2.31</td>
<td>39.92±4.90</td>
<td>4.56±0.38*</td>
<td>2.61±0.16*</td>
</tr>
<tr>
<td>PCA</td>
<td>1.10±0.12 †</td>
<td>14.50±1.42</td>
<td>47.91±2.27 †</td>
<td>3.78±0.26</td>
<td>2.29±0.31</td>
</tr>
</tbody>
</table>

*Compared with Sham group; p<0.05. †Compared with Renal IR Group; p<0.05.

IL-6: Interleukin-6; MDA: IR: Ischemia/reperfusion; Malondialdehyde; PCA: Protocatechuic acid; SOD: Superoxide dismutase; TAS: Total antioxidant status; TNF-α: Tumor necrosis factor alpha.
in tubulin (debris), and tissue damage symptoms, such as congestion, were clearly observed in IR group. Severity of tissue damage did not change in Renal IR+Vehicle group, while in Renal IR+PCA group, tissue damage was found to be less severe than in IR group (Figure 2). Mean score of tissue damage parameters was 1.85±1.22 in Sham group, 10±0.82 in IR group, 10.4±0.89 in Renal IR+Vehicle group, and 6.43±3.21 in Renal IR+PCA group. Mean score of tissue damage parameters was significantly lower in Renal IR+PCA group compared with IR group (p<0.001).

Effects of PCA on TUNEL Staining

Substantial nuclear changes, including death of apoptotic cells as indicated by TUNEL-positive cells, were observed in the kidneys of IR group. PCA-treatment reduced the number of TUNEL-positive cells (Figure 3).

DISCUSSION

In this study, PCA was demonstrated to have protective influence on renal IR damage. Renal IR damage is known to be associated with cell apoptosis, caused by increased ROS and oxidative stress.[3] Thus, treatment methods reducing ROS may also reduce oxidative stress, apoptosis, and renal IR damage.[3] Antioxidative properties of PCA may be able to target different stages of the pathophysiological events that cause IR damage. As an antioxidant agent, the most likely way is to reduce ROS.[14]

Excessive production of ROS causes lipid peroxidation. MDA levels increase due to lipid peroxidation.[14,27] It was found in the present study that MDA levels elevated in Renal IR group were lower in group with PCA treatment.

Endogenous antioxidants, such as SOD, protect cells from ROS damage. With increase in ROS production, SOD levels decrease.[4,23] Decrease in SOD lowers antioxidant status.[28] It was observed in this study that antioxidant components SOD and TAS, which decrease following renal IR, increased with PCA therapy.

It has been demonstrated that ROS, produced in tissues after IR, induces release of proinflammatory cytokines by stimulating macrophage.[29] Proinflammatory cytokines, such as TNF-α and IL-6, cause polymorphonuclear leukocyte activation and play an important role in both tissue and distant organ damage.[19,30] In our study, TNF-α and IL-6 levels were found to be lower with PCA treatment.

There are many studies showing that as result of renal IR, apoptosis and damage occur, particularly to the outer tubules of renal medulla.[2] In our study, histopathological scoring performed with samples taken from the outer renal medulla was better in those subjects with PCA treatment, and apoptosis was decreased.

There are some limitations to our study. Primarily, we have not investigated dose and time dependent effects of PCA. Because effect of PCA on renal IR has not been previously documented, we investigated effects on constant reperfusion time and dose of PCA. We used 45 minute-ischemia and 3-hour reperfusion in this study. Unfortunately, for technical reasons, we could not measure glomerular filtration rate or tubular function, which might have supported our results indicating reduced renal IR damage.

The results of this study have demonstrated that PCA has a protective effect on renal IR injury by reducing oxidative stress and tissue damage. These effects of treatment with PCA, a natural antioxidant, on renal IR injury have been established for the first time with this study. PCA may be an effective agent to prevent renal IR if our results are supported by other experimental and clinical studies.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All experimental protocols conducted on the animals were consistent with the National Institutes of Health Guidelines for the Care and Use of Laboratory Animals and approved by the Çanakkale 18 Mart University ethical committee.

Conflict of interest: None declared.

REFERENCES

10. Shi GF, An LJ, Jiang B, Guan S, Bao YM. Alpinia protocatechuic acid protects against oxidative damage in vitro and reduces oxidative stress in...
Doğal bir antioksidan olan protokateşuik asit asit çıkanlarda renal iskemi reperfüzyon hasarını azaltıyor mu?

Dr. Melih Yüksek,¹ Dr. Murat Yıldar,² Dr. Murat Başbuğ,³ Dr. Faruk Cavdar,² Dr. Öztekin Çığkan,² Dr. Hasan Aksıncı,¹,4 Dr. Figen Aslan,5 Dr. Dilek Aksıkt¹⁶

¹Balıkesir Üniversitesi Tıp Fakültesi, Tıp Bilimsel Araştırma Kurulu, Tıp Fakültesi, Kardioloji, Balıkesir
²Balıkesir Üniversitesi Tıp Fakültesi, Genel Cerrahi Anabilim Dalı, Balıkesir
³Çanakkale Onsekiz Mart Üniversitesi, Tıp Fakültesi, Toksikoloji ve Biyotoksikoloji, Balıkesir
⁴Balıkesir Üniversitesi Veteriner Fakültesi, Biyokimya ve Biyoteknoloji, Balıkesir
⁵Balıkesir Üniversitesi Tıp Fakültesi, Patoloji Anabilim Dalı, Balıkesir
⁶Balıkesir Üniversitesi Veteriner Fakültesi, Tıp Fakültesi, Biyokimya ve Biyoteknoloji, Balıkesir

AMAC: Protokateşuik asit (PCA) yönlü çalışmanın hedefi, hiperoksidik nörotoksik etkilerin önlenmesi ve kardiyovasküler hasarın azaltılmasıdır. PCA'nın nörotoxico potansiyelini araştırılması, patolojik durumların tedavisinde kullanılabileceği değerlendirilmektedir.

GEREC VE YÖNTEM: Dr. Dilek Aksıkt ve ekibi tarafından, Dr. Melih Yüksek'in önerisine dayanarak, bu çalışmanın hedefi, hiperoksidik nörotoksik etkilerin önlenmesi ve kardiyovasküler hasarın azaltılmasıdır. PCA'nın nörotoxico potansiyelini araştırılması, patolojik durumların tedavisinde kullanılabileceği değerlendirilmektedir.

TARTIŞMA: Oksidatif stres ve renal iskemi reperfüzyon hasarını azaltığını ortaya koyan PCA, IR hasarına karşı etkili bir ajan olarak kullanılabılır. Apatotik hücrelerin genel olarak arttığı ve protokateşuik asit, oksidatif stresi ve renal iskemi reperfüzyon hasarını azaltığını gösterilen bir antioksidan özelliğine sahiptir. Bu çalışmanın hedefi, hiperoksidik nörotoksik etkilerin önlenmesi ve kardiyovasküler hasarın azaltılmasıdır. PCA'nın nörotoxico potansiyelini araştırılması, patolojik durumların tedavisinde kullanılabileceği değerlendirilmektedir.

OLCU SUNUMU

TARTIŞMA: Oksidatif stres ve renal iskemi reperfüzyon hasarını azaltığını ortaya koyan PCA, IR hasarına karşı etkili bir ajan olarak kullanılabılır. Apatotik hücrelerin genel olarak arttığı ve protokateşuik asit, oksidatif stresi ve renal iskemi reperfüzyon hasarını azaltığını gösterilen bir antioksidan özelliğine sahiptir. Bu çalışmanın hedefi, hiperoksidik nörotoksik etkilerin önlenmesi ve kardiyovasküler hasarın azaltılmasıdır. PCA'nın nörotoxico potansiyelini araştırılması, patolojik durumların tedavisinde kullanılabileceği değerlendirilmektedir.

OLCU SUNUMU

TARTIŞMA: Oksidatif stres ve renal iskemi reperfüzyon hasarını azaltığını ortaya koyan PCA, IR hasarına karşı etkili bir ajan olarak kullanılabılır. Apatotik hücrelerin genel olarak arttığı ve protokateşuik asit, oksidatif stresi ve renal iskemi reperfüzyon hasarını azaltığını gösterilen bir antioksidan özelliğine sahiptir. Bu çalışmanın hedefi, hiperoksidik nörotoksik etkilerin önlenmesi ve kardiyovasküler hasarın azaltılmasıdır. PCA'nın nörotoxico potansiyelini araştırması, patolojik durumların tedavisinde kullanılabileceği değerlendirilmektedir.

OLCU SUNUMU

TARTIŞMA: Oksidatif stres ve renal iskemi reperfüzyon hasarını azaltığını ortaya koyan PCA, IR hasarına karşı etkili bir ajan olarak kullanılabılır. Apatotik hücrelerin genel olarak arttığı ve protokateşuik asit, oksidatif stresi ve renal iskemi reperfüzyon hasarını azaltığını gösterilen bir antioksidan özelliğine sahiptir. Bu çalışmanın hedefi, hiperoksidik nörotoksik etkilerin önlenmesi ve kardiyovasküler hasarın azaltılmasıdır. PCA'nın nörotoxico potansiyelini araştırması, patolojik durumların tedavisinde kullanılabileceği değerlendirilmektedir.

OLCU SUNUMU

TARTIŞMA: Oksidatif stres ve renal iskemi reperfüzyon hasarını azaltığını ortaya koyan PCA, IR hasarına karşı etkili bir ajan olarak kullanılabılır. Apatotik hücrelerin genel olarak arttığı ve protokateşuik asit, oksidatif stresi ve renal iskemi reperfüzyon hasarını azaltığını gösterilen bir antioksidan özelliğine sahiptir. Bu çalışmanın hedefi, hiperoksidik nörotoksik etkilerin önlenmesi ve kardiyovasküler hasarın azaltılmasıdır. PCA'nın nörotoxico potansiyelini araştırması, patolojik durumların tedavisinde kullanılabileceği değerlendirilmektedir.

OLCU SUNUMU

TARTIŞMA: Oksidatif stres ve renal iskemi reperfüzyon hasarını azaltığını ortaya koyan PCA, IR hasarına karşı etkili bir ajan olarak kullanılabılır. Apatotik hücrelerin genel olarak arttığı ve protokateşuik asit, oksidatif stresi ve renal iskemi reperfüzyon hasarını azaltığını gösterilen bir antioksidan özelliğine sahiptir. Bu çalışmanın hedefi, hiperoksidik nörotoksik etkilerin önlenmesi ve kardiyovasküler hasarın azaltılmasıdır. PCA'nın nörotoxico potansiyelini araştırması, patolojik durumların tedavisinde kullanılabileceği değerlendirilmektedir.

OLCU SUNUMU