Effect of curcumin on lung injury induced by skeletal muscle ischemia/reperfusion in rats

Hamed Ashrafzadeh Takhtfooladi, M.D.,1 Mohammad Ashrafzadeh Takhtfooladi, M.D.2

1Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran-Iran
2Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran-Iran

ABSTRACT

BACKGROUND: The aim of the present study was to investigate the effects of curcumin on lung damage following ischemia/reperfusion (I/R) injury after hind limb ligation.

METHODS: Forty Wistar rats were divided into four groups: sham (G1), I/R (G2), curcumin plus sham (G3), and curcumin plus I/R (G4). Curcumin was administered (200 mg/kg) daily for 2 weeks before the study. I/R was induced by placement of rubber tourniquets at the greater trochanters for 2 h, followed by reperfusion for 4 h.

RESULTS: Curcumin pretreatment had significantly lower level of malondialdehydes and higher level of superoxide dismutase in the lung tissues (p<0.05) than the I/R group. Glutathione peroxidase activity was not significantly different among the groups (p>0.05). I/R caused severe histopathological injury (p<0.05), including inflammatory cell infiltration and intra-alveolar hemorrhage.

CONCLUSION: These results suggest that curcumin pretreatment has protective effects against lung injury induced by muscle I/R.

Keywords: Curcumin; ischemia/reperfusion; lung; skeletal muscle.

INTRODUCTION

Ischemia/reperfusion (I/R) injury of the skeletal muscles is inevitable in various clinical conditions. This type of injury can occur from long surgical interventions on the extremities. It can damage parenchymal and endothelial cells, induce granulocyte and macrophage reactions, and trigger humoral factors (e.g., coagulation factors and oxygen free radicals).1,2

It is possible for I/R injuries to extend further than the ischemic region and cause damage to remote organs. One of the major causes of morbidity and mortality is lung injury following I/R damage to the extremities according to the literature. Increased microvascular permeability, as well as pulmonary edema, characterizes this type of injury.2

Inflammatory mediators, particularly oxygen free radicals and neutrophils, contribute to the development of lung injuries associated with I/R damage according to previous studies.4-7

Efforts have been made to develop novel treatment methods in order to prevent or limit damage to remote organs. Accordingly, various studies have used different pharmacological agents for this purpose.8-10 Curcumin with anticarcinogenic and anti-inflammatory effects is recognized as a potential stimulator of heat shock protein expression induced by stress.11 It can improve I/R damages in the kidneys, myocardium, and nervous tissues based on recent studies.12-16 However, to our knowledge, no studies have examined the effects of this compound on the lungs following I/R damage to the muscles. Accordingly, we examined the effectiveness of curcumin against muscle I/R damage. Histological and biochemical analyses were performed in order to assess its protective effects.

MATERIALS AND METHODS

The Animal Experiments Committee of Islamic Azad University approved the study protocol (2015-A2/017-4). The Pas-
eur Institute of Iran supplied 40 adult male Wistar rats. The mean weight of the rats was 230±20 g. The rats were kept at a temperature of 22 °C±2 °C (relative humidity, 45%±5% and 12:12 h light/dark cycle) with access to food and water.

The rats were randomly allocated to four groups (10 rats each): sham (G1), I/R (G2), curcumin plus sham (G3), and curcumin plus I/R (G4). Curcumin (Sigma Co., MO, USA) was administered via oral gavage at a dose of 200 mg/kg/day. It was dissolved in corn oil (C8267; Sigma Co.) for 2 weeks before the study.

Ketamine (50 mg/kg) and xylazine (5 mg/kg) were administered to induce anesthesia. Ischemia was induced by placing orthodontic rubber bands at both hip joints for 2 h. Body temperature was kept constant using a warming pad. After reperfusion for 4 h, the rats were euthanized, and the lungs were removed. Then, the left lungs were placed in a 10% formalin solution and prepared for histopathological examination via light microscopy.

The supernatants of the right lung homogenates were prepared as described by Yildirim et al.[17] The malondialdehyde (MDA) level was determined via thiobarbituric acid reactions based on the study by Yagi.[18] In addition, superoxide dismutase (SOD) activity was analyzed spectrophotometrically (560 nm) by determining the capacity to inhibit photochem-

| Table 1. Histological grading according to Koksel’s protocol |
|------------------|------------------|
| Grade 0 | Normal appearance |
| Grade 1 | Mild-moderate interstitial congestion and neutrophil leukocyte infiltration |
| Grade 2 | Perivascular edema formation, partial destruction of pulmonary architecture, and moderate neutrophil leukocyte infiltration |
| Grade 3 | Complete destruction of the pulmonary architecture and dense neutrophil leukocyte |

tical nitroblue tetrazolium reduction based on the method proposed by Winterbourn et al.[19] Moreover, glutathione peroxidase (GSH-Px) activities were spectrophotometrically (340 nm) determined using the method proposed by Paglia and Valentine.[20]

Data were analyzed using SPSS version 18.0 (SPSS Inc., Chicago, IL, USA). The Mann–Whitney U test was used for non-parametric analyses of biochemical variables. The ANOVA and Tukey’s tests were used for comparison of data. A P value <0.05 was considered significant.

RESULTS

No significant lung histological changes were found in the G1 and G3 groups based on light microscopy (p>0.05). After reperfusion for 4 h, extensive infiltration of inflammatory cells and intra-alveolar hemorrhage were reported in the G2 group (Figs. 1a, b). At this time, lung damage was less in the G4 group (Fig. 1c). Therefore, lung injuries caused by muscle I/R were more severe in the G2 group than in the G4 group (p<0.05; Fig. 2).

The G2 group showed a significantly higher MDA level than others (p<0.05; Fig. 3). On the other hand, SOD activity was significantly lower in the G2 group (p<0.05; Fig. 4). Based on the findings, the groups were significantly different in terms of GSH-Px activity (p>0.05; Fig. 5). No significant difference was found among the G1, G3, and G4 groups according to the biochemical results (p>0.05).

DISCUSSION

I/R injury is characterized by a sequence of events, resulting in damage to the cells and organ dysfunction.[22] Various
studies have been performed on the role and importance of neutrophils in I/R damage. Based on speculations, one of the major pathological dysfunctions in lung injury is endothelial cell damage, resulting from neutrophil activation, which can lead to inflammatory cytokine production and release of oxygen free radicals. Curcumin is regarded as an effective compound in eliminating I/R damage to different organs. It can be effective against I/R injuries of the muscles according to a recent study by Avci et al. This compound has been shown to be effective in human and animal models of I/R injury. Moreover, it can be useful in the treatment of diseases, such as cancer, diabetes, cardiovascular disorders, and arthritis.

The protective effects of curcumin are attributed to improved oxidative stress and inhibitory activities of protein kinases, adhesion molecules, inflammatory transcription factors, and inflammation. Some studies have revealed its potential for scavenging free radicals to prevent lipid peroxidation and increase the level of intracellular antioxidants.

In the present study, light microscopy indicated the disruption of alveolar architecture, as well as neutrophil infiltration in histopathological sections in the G2 group. However, sections from the group receiving curcumin demonstrated decreased histological damage. It appears that curcumin can significantly attenuate leukocyte recruitment in the lung tissues.
after muscle I/R, as demonstrated by the significantly higher number of neutrophils and greater histological damage to the lungs in the G2 group than in others.

One of the important causes of lung injury is lipid peroxidation, triggered by oxygen free radicals.[35] In our study, lung injury after muscle I/R was associated with high MDA levels in the lung tissues (a proper marker of lipid peroxidation).[36] Nevertheless, curcumin could significantly decrease the MDA level. This finding is in line with previous studies, representing curcumin as an inhibitor of lipid peroxidation.[30]

Additionally, evidence has revealed the antioxidant activities of curcumin (especially inhibition of lipid peroxidation).[37] In the current study, the protective effects of curcumin on the cells against lipid peroxidation might be attributed to its direct antioxidant and anti-inflammatory activities.

Based on the present findings, pretreatment with curcumin can reduce lung injuries resulting from muscle I/R. Inhibition of neutrophil aggregation, as well as oxidative damage in the injured lung, might be the underlying mechanisms. Further research is required to confirm the clinical effectiveness of this compound.

Funding: None.

Ethical approval: All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Conflict of interest: None declared.

REFERENCES

1. Land WG. The role of postischemic reperfusion injury and other non-tnogen-dependent inflammatory pathways in transplantation. Transplantation 2005;79:505–14. [CrossRef]
12. Shahed AR, Jones E, Shoekes D. Quercetin and curcumin up-regulate antioxidant gene expression in rat kidney after ureteral obstruction or ischemia/reperfusion injury. Transplant Proc 2001;33:2988. [CrossRef]
15. Thiyagarajan M, Sharma SS. Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia in rats. Life Sci 2004;74:969–85. [CrossRef]

