A 65-year-old Japanese man using peritoneal hemodialysis due to diabetic nephropathy underwent a planned coronary angiography as a preoperative examination. Fourteen years earlier, he had undergone a percutaneous coronary intervention due to acute myocardial infarction and had been implanted with a bare-metal stent in the left anterior descending coronary artery. Although his condition had run a benign course without any recurrence of cardiovascular events, coronary angiography was performed 14 years later in preparation for a living-donor kidney transplantation. Coronary angiography revealed less than 50% restenosis (Figure A). Although Figure B indicates circumferentially covered stent struts, the homogeneous neointima pattern observed with optical coherence tomography (OCT) appeared to suggest smooth muscle cells and extracellular matrix. Figure C demonstrates adluminal attenuation with clear borders within the intrastent tissue, indicating calcified neoatherosclerosis. Moreover, severely calcified neoatherosclerosis-embedded stent struts were clearly documented using OCT (Figure D). Whether this unique characteristic might be limited to patients undergoing hemodialysis treatment remains uncertain.

Figures—Coronary angiography revealed less than 50% restenosis in the left anterior descending artery (A). Circumferentially covered stent struts and a homogeneous neointima pattern were illustrated in 2-dimensional cross sections of optical coherence tomography (OCT) images (B). Adluminal attenuation with clear borders within the intrastent tissue was observed in 2-dimensional cross sections of OCT images (C). Stent struts were completely embedded in severe calcification, as demonstrated by 2-dimensional cross sections of OCT images (D).

GW: Guidewire artifact. *An asterisk denotes calcification.