Percutaneous thrombin injection treatment of a femoral artery pseudoaneurysm with simultaneous arterial balloon occlusion: Case report and review of the literature

Femoral arter psödoanevrizmasının eş zamanlı olarak artere balon tikaması uygulanarak perkütan trombin enjeksiyonu ile tedavisı: Olgu sunumu ve literatürün gözden geçirilmesi

Onur Ergun, M.D., Pınar Çeltikçi, M.D., İdil Güneş Tatar, M.D., Metin Yılmaz, M.D.,* Baki Hekimoğlu, M.D.

Department of Radiology, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
Department of Cardiovascular Surgery, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey

Summary– Iatrogenic femoral artery pseudoaneurysm at the level of the hip joint in a 52-year-old patient was treated by ultrasound-guided percutaneous thrombin injection, while a balloon was inflated at the neck of the pseudoaneurysm under fluoroscopy, to prevent thrombin leakage to the arterial system.

Iatrogenic femoral artery pseudoaneurysm (IFAP) is a well-known complication of endovascular procedures involving femoral artery catheterization for diagnostic or therapeutic intervention. Reported incidence of IFAP is 0.05–2% in cases of diagnostic catheterization and 2–7.7% following coronary or peripheral intervention.[1] Frequent use of potent anticoagulant and antiplatelet agents during and after the intervention, and utilization of larger sheaths for therapeutic procedures, increases the incidence of this complication.[1] Traditional treatment of IFAP that has failed to spontaneously resolve is surgical repair, associated with increased morbidity.[1] Recently favored are minimally invasive endovascular methods.

Presently described was a case of IFAP with a short neck, treated by ultrasound-guided percutaneous thrombin injection, while a balloon was inflated at the pseudoaneurysm neck under fluoroscopy, to prevent thrombin leakage to the parent artery.

CASE REPORT

A 52-year-old male patient underwent diagnostic coronary angiography via right femoral artery access and was discharged from the hospital the following day. One week after the procedure, the patient was admitted to the cardiology outpatient clinic with increased pain and swelling at his right groin. Color Doppler ultrasonography (CDUS) revealed a pseudoaneurysm communicating with the right superficial femoral artery (SFA), just distal to the femoral bifurcation, approximately 8 centimeters in diameter, with no sign of thrombosis within the lumen. The pseudoaneurysm sac was located close to the parent artery, with no visible neck. Ultrasound-guided compression treatment (UGCT) was attempted for 1 week. Control CDUS showed that the pseudoaneurysm sac was partially resolved.

Abbreviations:

CDUS Color Doppler ultrasonography
IFAP Iatrogenic femoral artery pseudoaneurysm
SFA Superficial femoral artery
UGCT Ultrasound-guided compression treatment

© 2016 Turkish Society of Cardiology
thrombosed, with a filling lumen of 3x2 cm adjacent to the parent artery. UGCT was applied for an additional week, but no change was observed in the filling of pseudoaneurysm.

The patient was referred to the interventional radiology unit for percutaneous, ultrasound-guided thrombin injection. As there was a close relation between the sac and the parent artery, with no visible neck, percutaneous ultrasound-guided thrombin injection in isolation was thought to bear risk of thrombin leakage to the arterial system. Diagnostic right lower extremity angiography was planned to more accurately assess the pseudoaneurysm sac and its relation with the parent artery. Right lower extremity angiograms obtained with left femoral artery access revealed a pseudoan-

![Figure 1. Right lower extremity angiography showing a pseudoaneurysm sac (straight arrows) with a short neck (curved arrow), communicating with the superficial femoral artery. Antero-posterior (A) and oblique (B) projections.](image1)

Figure 1. Right lower extremity angiography showing a pseudoaneurysm sac (straight arrows) with a short neck (curved arrow), communicating with the superficial femoral artery. Antero-posterior (A) and oblique (B) projections.

![Figure 2. (A) Contrast material injected from a separate needle (curved arrow). No leakage from the sac to the arterial lumen was observed. Inflated balloon at the neck level of the pseudoaneurysm (asterisks). Thrombin injection needle (straight arrow). (B) Control angiogram showing that pseudoaneurysm sac filling had decreased, but contrast filling at the neck (curved arrow) remained.](image2)

Figure 2. (A) Contrast material injected from a separate needle (curved arrow). No leakage from the sac to the arterial lumen was observed. Inflated balloon at the neck level of the pseudoaneurysm (asterisks). Thrombin injection needle (straight arrow). (B) Control angiogram showing that pseudoaneurysm sac filling had decreased, but contrast filling at the neck (curved arrow) remained.
eurysm sac with a short neck communicating with the SFA (Figure 1a, b). Percutaneous ultrasound-guided thrombin injection with simultaneous temporary balloon occlusion of the SFA at the level of the pseudoaneurysm neck was planned.

After placement of 6-F 45-cm sheath (Super Arrow-Flex; Teleflex Medical Europe Ltd., Athlone, Ireland) in the right external iliac artery over left common femoral artery access, a 7-mm x 3-cm balloon catheter (PowerFlex Pro; Cordis Corporation, Hialeah, FL, USA) was inserted at the level of the pseudoaneurysm neck. An 18-G needle was placed in the pseudoaneurysm sac using ultrasonographic guidance, for thrombin injection. Following balloon inflation, contrast material was injected from another needle, in order to ensure the lack of leakage from the sac to the arterial lumen (Figure 2a). Thrombin injection was performed using ultrasonographic guidance while the balloon remained inflated for 1 minute. Control angiogram showed that pseudoaneurysm sac filling had decreased, but that contrast filling remained at the neck (Figure 2b). The needle was repositioned to the neck of the pseudoaneurysm, and the procedure was repeated. Control angiogram showed presence of neither pseudoaneurysm sac nor neck filling (Figure 3a, b). No embolism was observed in the SFA or distal arteries of the right lower extremity. A total of 5000 units of IV heparin was administered during the procedure to prevent thromboembolic complications. The patient was hospitalized overnight and discharged the following day with recommendation of bed rest. Control CDUS performed at 1 week and 1 month postprocedure showed no filling in the pseudoaneurysm sac, and the patient’s complaints were relieved.

DISCUSSION

IFAP occurs when arterial wall defect on the puncture site fails to seal, causing a pulsatile hematoma formation communicating with the arterial lumen, which is confined by surrounding tissues. IFAP usually results from low puncture of the common femoral artery or puncture of the SFA, performed in order to provide access for angiographic procedures. Obesity, arterial hypertension, female sex, and antithrombotic therapy are also risk factors.⁴ These lesions usually present with a pulsatile mass or thrill located at the puncture site. In addition to patient discomfort and delayed hospital discharge, IFAP may cause complications such as rupture, distal embolization, femoral vein compression, neuropathy, or local skin ischemia.⁴ Patients with clinical findings suggestive of IFAP should be evaluated with CDUS. CDUS criteria for IFAP diagnosis consists of swirling color flow in a mass separate from the femoral artery, color flow within the tract connecting the mass to the artery, and the typical to fro wave-form in the neck.⁴

![Figure 3. Control angiogram showed no pseudoaneurysm sac or neck filling. Anteroposterior (A) and oblique (B) projections.](image-url)
The most frequently reported location for this procedure is the femoral artery. Samal et al. reported 4 cases of femoral pseudoaneurysms treated with percutaneous thrombin injection and transient balloon occlusion at the origin of the pseudoaneurysm. All pseudoaneurysms were secondary to diagnostic procedures, which were combined with therapeutic intervention in some cases. The authors considered UGCT unsuitable for reasons including underlying severe vascular disease, anticoagulant therapy for concomitant conditions (i.e., deep vein thrombosis), and size and tenderness of the lesion. Contralateral femoral artery access was used for balloon catheter and thrombin injection, performed percutaneously. All 4 procedures were successful, without any complications or recurrence. Nakai et al. treated 3 postcatheterization femoral artery pseudoaneurysms with percutaneous n-butyl cyanoacrylate and lipiodol injection (at a ratio of 1:3) under balloon inflation at the femoral artery, after failed attempts at UCGT. Bhat et al. reported a complicated example of the same procedure in a patient with femoral artery pseudoaneurysm secondary to unsuccessful attempts at insertion of femoral venous line for dialysis. Following second temporary balloon occlusion for repeated thrombin injection, SFA occlusion was detected. The problem was resolved by immediate aspiration of the thrombus.

Treatment of upper extremity pseudoaneurysm using this technique has also been reported. Aytekin et al. reported a case of radial artery pseudoaneurysm surrounded with a hematoma at the elbow level, formed after a hemodialysis session in a patient with a surgically created arteriovenous fistula in her wrist. They were unable reach the lesion via the transfemoral route due to the tortuosity of the radial artery, which was secondary to the fistula. Therefore, after retrograde catheterization of the radial artery and inflation of a balloon at the neck level, n-butyl cyanoacrylate and lipiodol were percutaneously injected (1:3 ratio) with ultrasonographic guidance. Complete occlusion of the pseudoaneurysm was achieved, with no sign of distal embolization. A painless small subcutaneous mass formation at the pseudoaneurysm site on follow-up was reported.

Clark et al. reported 2 cases of brachial artery pseudoaneurysms in patients with arteriovenous hemodialysis fistulas formed secondary to arterial dialysis cannula insertion. One case was treated using ultrasound-guided thrombin injection combined with balloon inflation at the neck level, the other with ultrasound-guided compression of the neck. Balloon inflation was selected in the first case because the swelling of the arm prevented effective compression of the neck. Elford et al. reported a case of axillary artery...
pseudoaneurysm formed after inadvertent puncture of the artery during pacemaker insertion via the subclavian vein.\[15\] UGCT was impossible due to proximity of the clavicle to the lesion. Ultrasound-guided thrombin injection was performed following isolation of the pseudoaneurysm from the parent artery by balloon inflation. Mittleider et al. reported a femoral artery pseudoaneurysm that connected with the femoral vein by an arteriovenous fistula.\[16\] They treated the pseudoaneurysm using ultrasound-guided thrombin injection combined with balloon occlusion of the femoral vein at the level of the arteriovenous fistula.

In addition to peripheral arterial applications of this procedure, Holder et al. reported a case of carotid artery pseudoaneurysm secondary to accidental carotid artery puncture during internal jugular vein cannulation, treated successfully using this technique.\[17\] UGCT trial had failed, and surgery was considered risky, given the patient’s poor condition. Thrombin injection was selected over stent-graft placement due to the long neck of the pseudoaneurysm. The common carotid artery was occluded for 10 seconds at the level of the neck, while thrombin was percutaneously injected under ultrasonographic guidance, resulting in instantaneous thrombosis of the lesion. No neurological symptoms were reported.

Owen et al. published a case series of 25 pseudoaneurysms treated by ultrasound-guided injection of thrombin or tissue adhesive. In 19 cases, protective balloon occlusion of the pseudoaneurysm neck was performed during the injection of tissue adhesive.\[18\] Pseudoaneurysms were located at the femoral, tibioperoneal, posterior tibial, and popliteal arteries. Previous UGCT had failed in all patients, and all pseudoaneurysms were successfully treated, with no embolic complications. One patient developed contralateral femoral pseudoaneurysm secondary to additional puncture. Three femoral pseudoaneurysms were occluded by balloon occlusion of the neck, with 1 requiring additional injection of tissue adhesive.

Use of balloon to cover the pseudoaneurysm neck during thrombin injection in order to protect the native vessel was first reported by Loose and Haslam,\[9\] and the need for this measure has been widely discussed. Owen et al. concluded that the protective intervention is unnecessary, as the only complication occurred secondary to additional intervention.\[18\] In the case reported by Bhat et al., distal thrombosis occurred in spite of the protective procedure.\[12\] However, other authors prefer the protective measure of balloon occlusion, advocating this use in the avoidance of distal embolic complications. Holder et al., in a report concerning carotid pseudoaneurysm, pointed out that pseudoaneurysm location and potential risks should be considered.

This technique bears potential additional complications, such as contralateral puncture site-related problems (pseudoaneurysm or hematoma formation, infection, etc.), parent artery rupture, dissection secondary to balloon inflation, parent artery thrombosis, distal embolism, and pseudoaneurysm rupture.\[12,18\]

In the present case, the location of the pseudoaneurysm was very close to the hip joint, rendering treatment covered stent-graft unreasonable. Given the size of the pseudoaneurysm, coil embolization of the sac was considered not to be costeffective. When considering thrombin injection in isolation, the pseudoaneurysm was too large to effectively compress, and had a short neck that could hardly be visualized on ultrasonography, increasing the risk of leakage of the injected thrombin. For these reasons, we decided to combine ultrasound-guided thrombin injection with simultaneous balloon inflation at the neck level. While this additional intervention provided a safer procedure, it requires additional arterial puncture, which can be considered a disadvantage.

When UGCT is unsuccessful or impossible, when distal embolism creates a high risk of increase in morbidity and mortality, or when the pseudoaneurysm neck is wide, short, or both, we believe that thrombin injection should be combined with balloon occlusion.

Conclusion

Ultrasound-guided thrombin injection with simultaneous balloon inflation at the neck level provides a safe and efficient treatment for large IFAPs, particularly in those with a short or wide neck. However, larger studies are needed to determine if the combined procedure truly decreases the risk for thromboembolism, or increases morbidity, given the additional intervention.

Conflict-of-interest issues regarding the authorship or article: None declared.

REFERENCES

1. Webber GW, Jang J, Gustavson S, Olin JW. Contemporary

Keywords: Endovascular procedures; pseudoaneurysm; thrombin.

Anahtar sözcükler: Endovasküler işlemler; psödoanevrizma; trombin.