A case of myocardial muscular bridging causing severe hypotension during exercise-electrocardiography test

Egzersiz testi sırasında ciddi hipotansiyon gelişen miyokart köprüleşmesi olgusu

Gamze Babur Güler, M.D., Hacı Murat Güneş, M.D., Ekrem Güler, M.D.,
Tamer Atasever, M.D., * Ali Metin Esen, M.D. *

Department of Cardiology, İstanbul Medipol University Faculty of Medicine, İstanbul, Turkey
*Department of Nuclear Medicine, İstanbul Medipol University Faculty of Medicine, İstanbul, Turkey

Abbreviations:
CAD Coronary artery disease
MB Myocardial bridge
MPS Myocardial perfusion scintigraphy

Summary– Outlining the severity of the myocardial bridge (MB) is a critical step for selecting the appropriate option among medical, surgical, or angioplasty-based treatments. Invasive treatments are usually preferred if treatment-resistant symptoms are observed or ischemia is proven by tests such as fractional flow reserve or myocardial perfusion scintigraphy (MPS). In this report, we present a patient who developed severe hypotension during treadmill exercise test, even though there were no perfusion defects during adenosine-induced MPS. This case suggests MPS with adenosine is not a good choice for evaluating ischemia in MB patients, as it may cause false negative results.

CASE REPORT

Treadmill exercise test is frequently used for investigating coronary artery disease (CAD) in patients with typical or atypical chest pain. Exercise-induced hypotension as well as electrocardiographic changes during the test may also indicate cardiac diseases (hypertrophic obstructive cardiomyopathy, aortic stenosis, etc.) rather than CAD. Angiographically proven severe myocardial bridging (MB) is associated with severe hypotension, angina, and arrhythmia. [1]

Herein, we present an MB patient who developed serious hypotension during treadmill test, although previous adenosine-induced myocardial perfusion scintigraphy (MPS) did not reveal any perfusion defect. We also discuss the effectiveness of adenosine stress for inducing ischemia in patients with MB.

Correspondence: Dr. Gamze Babur Güler. Medipol Üniversitesi Esenler Hastanesi, Kardiyoloji Bölümü, İstanbul, Turkey.
Tel: +90 216 - 440 10 00 e-mail: gamzebabur@hotmail.com
© 2016 Turkish Society of Cardiology
Cardiac biomarkers were normal at the 6th and 12th hours post-treadmill test. Coronary angiography revealed typical milking image (Figure 1) of MB at the mid part of the left anterior descending artery. The patient was prescribed metoprolol and acetylsalicylic acid before he was discharged without any symptoms on Day 3 of hospitalization. He was asymptomatic during the 2-month follow-up period.

DISCUSSION

Our patient exhibited hypotensive response during treadmill test, even though there was no perfusion defect on MPS. This phenomenon may be explained by increased systolic compression and shortened diastolic perfusion period (during tachycardia, decreased intracoronary pressure, hypovolemia), which increase the severity of MB due to its dynamic pathophysiology. In a case report, it was suggested that exercise results in a greater venous return, which leads to a more forceful myocardial contraction; as a result, a longer occlusion period would be promoted on the MB, and this causes an imbalance between the relaxation period and ventricular contraction period, consequently reducing cardiac output.[2]

Another issue is the appropriateness of adenosine stress-induced MPS to detect ischemia in MB cases. Several adenosine receptors were identified over the last decade; some of them have negative chronotropic and dromotropic effects by modulating sinoatrial and atrioventricular nodal conduction, while others induce coronary vasodilation.[3] Previously, perfusion scintigraphy with dipyridamole was used to detect the severity of MB.[4] To the best of our knowledge, use of adenosine-induced scintigraphy has not been reported in MB cases. The specificity or sensitivity of adenosine-induced scintigraphy in the diagnostic accuracy of MB is unknown. Adenosine may overshadow the severity of MB, since negative chronotropic and dromotropic effects counter the tachycardia-inducing effect. In our case, we could not detect any perfusion defects, while we did encounter a severe hemodynamic collapse. It is difficult to decide on the criteria for determining MB severity. Additionally, it was challenging for us to determine the more significant test result (severe hypotensive response in treadmill test or normal perfusion in MPS) in terms of follow-up treatment. We decided to treat the patient until all symptoms were alleviated.

Hypotensive response to exercise test is an important finding for the diagnosis and prognosis of CAD. Hypotensive response is also an absolute indication for coronary angiography after treadmill exercise test. Although an ischemic area could not be detected during MPS, a severe MB may mimic CAD. MB can be listed as a rare cause of abnormal hypotensive response to exercise test. After diagnosis of MB, individualized imaging methods should be used to determine treatment and follow-up strategy. In our
opinion, MPS with adenosine is not a good choice for evaluating ischemia in MB patients, as it may cause false negative results.

Conflict-of-interest issues regarding the authorship or article: None declared.

REFERENCES

Keywords: Adenosine; hypotension; myocardial bridge.

Anahtar sözcükler: Adenozin; hipotansiyon; miyokardiyal köprüleşme.