Percutaneous transcatheter closure of ruptured sinus of Valsalva aneurysm

Rüptüre sinüs Valsalva anevrizmasının perkütan transkateter yol ile kapatılması

Hasan Arı, M.D., Sencer Çamcı, M.D., Selma Arı, M.D., Mustafa Kınık, M.D., Mehmet Melek, M.D.

Department of Cardiology, Bursa Yüksek İhtisas Training and Research Hospital, Bursa, Turkey

Summary—A sinus of Valsalva aneurysm (SVA) is a rare congenital anomaly. SVA rupture can lead to biventricular failure as a result of systemic to pulmonary shunting. Surgical repair has been the traditional treatment for these aneurysms. More recently, percutaneous treatment has been successfully performed on appropriate patients. This is the case of a 36-year-old man who had a ruptured SVA that was successfully treated using a catheter-based approach and a patent ductus arteriosus occluder device.

CASE REPORT

A 36-year-old male patient was referred to a cardiology clinic because of a murmur heard in a physical examination. The patient had experienced fatigue and dyspnea for a year. A continuous grade 3/6 murmur was heard in the left third intercostal space on physical examination. A transthoracic echocardiogram was performed, followed by a transesophageal echocardiogram (TEE). An SVA at the noncoronary sinus that protruded into the right atrium was observed. Color Doppler imaging revealed continuous flow from the aorta to the right atrium (Fig. 1a, b). A ruptured segment of the SVA 6 mm in diameter was noted. A pulmonary-to-systemic flow ratio (Qp/Qs) of 1.55:1 was calculated at the time of cardiac catheterization and a decision was made to pursue percutaneous closure.

Written consent was obtained from the patient and the corrective procedure was performed with fluoroscopy and TEE guidance and conscious sedation. The right femoral artery and vein were catheterized. The ruptured SVA and a pigtail catheter were visualized using aortography in the left anterior oblique 30° and cranial 15° view (Video 2'). A right Judkins...
coronary catheter was inserted through the right femoral artery and inserted at the noncoronary sinus. The ruptured SVA was crossed with the Judkins catheter. Next, a 300-cm exchange guidewire (Rope wire; AGA Medical Holdings Inc., Plymouth, MN, USA) was advanced through the ruptured SVA to the right atrium. It was caught with a snare (Goose Neck Snare; mictovenes Main) and was removed through the right femoral vein. An arteriovenous loop was formed. A 7-F, 110-cm delivery system (Lepu Medical Technology (Beijing) Co., Ltd., Beijing, China) was advanced through the ruptured SVA to the ascending aorta over the wire from the right femoral vein. The exchange guidewire was removed after the appropriate position was reached in the ascending aorta (the tip of the delivery catheter was directed toward the ascending aorta). An 8/10-mm conical patent ductus arteriosus (PDA) occluder device (Cone Shape PDA Occluder, Lepu Medical Technology (Beijing) Co., Beijing, China) was selected to close the ruptured SVA. The device was advanced to the end of the delivery catheter with a pusher catheter. The aortic disc of the device was deployed at the noncoronary sinus, followed by the pulmonary disc at the right atrium after confirming each step with fluoroscopy and TEE (Fig. 2a, b, Video 3”). Once an optimal position in the ruptured SVA was confirmed, the device was deployed. There was no significant aortic regurgitation or any encroachment on coronary arteries seen on TEE or control aortography (Fig. 3a, b, Video 4, 5”). The patient was discharged 48 hours after the procedure. Treatment for 6 months with acetylsalicylic acid 100 mg and clopidogrel 75 mg daily was initiated after the procedure. No residual defect was observed at the 6-month control examination.

Figure 1. (A) Ruptured noncoronary sinus Valsalva aneurysm (red arrow); (B) Color Doppler imaging demonstrating continuous flow from the aorta to the right atrium.

Figure 2. (A) Fluoroscopic image of the aortic disc of the device at the noncoronary sinus and the pulmonic disc at the right atrium (device: red arrow; pigtail: blue arrow); (B) Echocardiographic image of the aortic disc of the device at the noncoronary sinus and the pulmonic disc at the right atrium (device: red arrow; pigtail: blue arrow).
DISCUSSION

An SVA is usually a congenital anomaly and accounts for 0.1% to 3.5% of congenital heart defects, with a greater incidence in Asians. An SVA is typically the result of a lack of fusion between the tunica media and the annulus fibrosus of the aortic valve. Aneurysms usually originate in the right coronary sinus or non-coronary sinus and terminate in the right ventricle and the right atrium. The aneurysm usually ruptures in the period between adolescence and early adulthood.[4–6]

The most commonly associated defects are a ventricular septal defect, bicuspid aortic valve, infundibular pulmonary stenosis, patent ductus arteriosus, atrial septal defect, coarctation and aortic regurgitation, or aortic stenosis.[4]

The survival rate for congenital SVA patients is 95% at 20 years, since most SVAs do not rupture before 20 years of age. An unruptured SVA has been observed in serial monitoring up to several years after initial diagnosis, but most unruptured SVAs have been found to progress and ultimately rupture. A rupture can have serious hemodynamic effects, especially when it occurs quickly. About 35% to 58% of patients with a ruptured SVA become acutely symptomatic.[6] The most common symptoms are dyspnea, orthopnea, palpitations, fatigability, palpitations, chest pain, and even sudden death.[4] Adams et al.[7] documented a mean survival period of 3.9 years in patients with an untreated ruptured SVA. Therefore, early closure is recommended as soon as the diagnosis is confirmed.

At least 2 orthogonal projections are needed for better visualization of the rupture site and the receiving chamber. Ruptures from the right or non-coronary sinus into the right atrium or with right ventricular inflow may be visualized in anteroposterior or right anterior oblique views (20–30°) with minimal cranial angulations. Ruptures from the right sinus into the right ventricular outflow tract or pulmonary artery are visualized in left anterior oblique views (30–40°) with cranial angulations of about 20–30°.[8] TEE is also needed to determine the correct placement of the closure device and to manage possible complications during the operation.

Since 1956, the primary route of treatment has been surgical closure, but the associated morbidity is high as a result of the implementation of a sternotomy and cardiopulmonary bypass.[6] A percutaneous closure technique is now available and has proven to be a simpler method with less morbidity. The first case of a transcatheter closure of a ruptured SVA was described in 1994 by Cullen et al.[2] in a patient with recurrent sinus of Valsalva rupture after prior surgical repair. A Rashkind umbrella device was used to perform the closure.[2] Fedson et al.[9] reported the first case of the use of the Amplatzer ductal occluder device (ADO; St. Jude Medical, St. Paul, MN, USA) to repair a ruptured sinus of Valsalva aneurysm in 2003. Since then, the use of percutaneous closure has grown.[4,10]

The most commonly used device is the ADO; other less frequently used devices included muscular ventricular septal defect occluders, atrial septal defect occluders, Rashkind umbrella devices, and rarely, coils.[4] A venous antegrade closure technique is used for conventional ductal occluders and a retrograde aortic approach via the femoral artery is used for devices such as
as muscular ventricular septal occluders and the ADO-
II device (St. Jude Medical, St. Paul, MN, USA).[8,11]

In a review published by Kuriakose et al.,[4] the
mean minimal diameter of the ruptured site was 7 mm
(range: 2–15 mm), and accordingly, the device size
ranged from 6/4 mm to 16/14 mm. The lesions were
measured using TEE, and the authors selected devices
that were 2 mm to 4 mm larger than the defect. In
our case, the ruptured SV A diameter was 6 mm and
we used an 8/10 mm MemoPart PDA occluder device
(Lepu Medical Technology (Beijing) Co., Ltd., Bei-
ing, China) for percutaneous closure. Devices should
be released only after confirming precise placement,
making certain there is no significant aortic regurgita-
tion, tricuspid regurgitation, right ventricular outflow
tract obstruction, arrhythmia, or coronary encroach-
ment.[4]

Potential complications of percutaneous closure of
a ruptured SV A include valve regurgitation, coronary
obstruction, right ventricular outflow obstruction,
hemolysis associated with residual shunt, arrhythmia,
and device embolization.[3,4,8] Valve regurgitation, de-
vice embolization, right ventricular outflow obstruc-
tion, and coronary obstruction are usually associated
with the need to use large devices to provide closure
of a large ruptured SV A.

Approximately 3% of SVAs closed with a percu-
taneous technique have required a surgical procedure
at the closure site.[3,4,8] About 4% of SVAs treated
surgically have required reoperation due to aortic in-
sufficiency.[3,4,8] In patients treated with surgery, mor-
tality has been reported to be approximately 1.5% in
the early period and 3% in the late period, but it is
noteworthy that these data were obtained from studies
conducted in 1960 to 2007.[3,4,8]

In earlier SVA cases, postintervention antico-
agulation typically included the administration of
acetylsalicylic acid for 6 months, and sometimes
clopidogrel for the first 4 to 6 weeks or for as long as
6 months.[4,8]

Conclusion

The percutaneous closure of a ruptured SVA can be
successfully performed in the appropriate patients.
Percutaneous closure with the right device can be a
reliable and safe alternative method to surgical treat-
ment of a ruptured SVA.

Acknowledgement

This case was presented as an oral presentation at the
32nd National Cardiology Congress of the Turkish
Society of Cardiology, Antalya, Turkey, held October

*Supplementary video file associated with this article
can be found in the online version of the journal.

Peer-review: Externally peer-reviewed.

Conflict-of-interest: None.

Informed Consent: Written informed consent was ob-
tained from the patient for the publication of the case
report and the accompanying images.

Authorship contributions: Concept: H.A., S.A., De-
S.Ç., M.K., Data collection: S.A., S.Ç., M.K., Litera-
M.M.

REFERENCES

1. Edwards JE, Burchell HB. The pathological anatomy of defi-
ciences between the aortic root and the heart, including aortic

2. Cullen S, Somerville J, Redington A. Transcatheter closure
of a ruptured aneurysm of the sinus of Valsalva. Br Heart J
1994;71:479–80. [CrossRef]

3. Sivadasanpillai H, Valaparambil A, Sivasubramonian S, Ma-
hadevan KK, Sasidharan B, Nambodiri N, et al. Percutaneous
closure of ruptured sinus of Valsalva aneurysms: intermediate

4. Kuriakose EM, Bhatla P, McElhinney DB. Comparison of
reported outcomes with percutaneous versus surgical clo-
cure of ruptured sinus of Valsalva aneurysm. Am J Cardiol
2015;115:392–8. [CrossRef]

ison of immediate results and mid-term follow-up of surgical
and percutaneous closure of ruptured sinus of Valsalva aneu-
ysm. J Cardiol 2014;63:239–43. [CrossRef]

al. Ruptured aneurysms of the sinus of Valsalva in Oriental

7. Adams JE, Sawyers JL, Scott HW Jr. Surgical treatment of
aneurysms of the aortic sinuses with aorticoatrial fistula; ex-
perimental and clinical study. Surgery 1957;41:26–42.

8. Mahimarangaiah J, Chandra S, Subramanian A, Srinivasa KH,
Usha MK, Manjunath CN. Transcatheter closure of ruptured
sinus of Valsalva: Different techniques and mid-term fol-

low-up. Catheter Cardiovasc Interv 2016;87:516–22. [CrossRef]

Keywords: Patent ductus arteriosus occluder; ruptured sinus of Valsalva aneurysm; transcatheter closure.

Anahtar sözcükler: Patent ductus arteriosus tıkayıcı; sinüs Valsalva anevrizma rüptürü; kateter aracılı kapama.