


Authors reply

Dear Editor,

We would like to thank our colleagues who read our study[1] with such attention. The axis of the lead aVR is opposed to the left ventricular (LV) apical region, which provides unique information about global ischemia of this region.[2] In our study, T-wave positivity at the lead aVR was shown to be closely related to LV thrombus formation after acute anterior myocardial infarction.[1] Although Cetin et al. proposed that T-wave positivity in the lead aVR might reflect the presence of T-wave negativity at the inferolateral leads, only 1 patient in our study (Fig. 1b) demonstrated T-wave negativity at the inferolateral leads, which was found coincidentally. Consistent with previous studies,[3,4] we also reported that the lead aVR might provide indirect information about reciprocal ischemic changes in the LV apical region. However, no association between T-wave positivity at the lead aVR and T-wave negativity at the inferolateral leads as a reciprocal change was found in our study. In addition, fragmented QRS (fQRS) on a surface electrocardiogram (ECG) reflects delayed ventricular depolarization time, most likely due to ventricular myocardial scarring, and has been shown to be a marker of adverse cardiovascular outcomes in several cardiovascular diseases.[5,6] Although there are studies showing a significant association between fQRS and reperfusion failure and adverse in-hospital and long-term outcomes,[7] none of our patients demonstrated a fQRS on the 48-hour ECG, though this might be due to ECG assessment without magnification. Long-term follow-up data is lacking in our study because of the cross-sectional design; fQRS might develop over time due to LV scarring and remodeling.

Yahya Kemal İcen, M.D., Abdullah Orhan Demirtaş, M.D., Hasan Koca, M.D., Mevlut Koç, M.D.

Department of Cardiology, Health Sciences University, Adana Health Practices and Research Center, Adana, Turkey

e-mail: dryyahyakemalicien@gmail.com


Conflict of interest: None declared.

References


