The impact of small bowel endoscopy in patients with hereditary haemorrhagic telangiectasia.

Dr S Chetcuti Zammit,
MD, MRCP, MSc
stf_che@yahoo.com
Academic Department of Gastroenterology, Royal Hallamshire Hospital, Sheffield Teaching Hospitals, Sheffield, UK.

Prof D S Sanders,
Academic Department of Gastroenterology, Royal Hallamshire Hospital, Sheffield Teaching Hospitals, Sheffield, UK.

Prof M E McAlindon,
Academic Department of Gastroenterology, Royal Hallamshire Hospital, Sheffield Teaching Hospitals, Sheffield, UK.

R Sidhu
Academic Department of Gastroenterology, Royal Hallamshire Hospital, Sheffield Teaching Hospitals, Sheffield, UK.

To the Editor
We have read with interest the article entitled: “Thalidomide for the Management of Bleeding Episodes in Patients with Hereditary Hemorrhagic Telangiectasia, Effects on Epistaxis Severity Score and Quality of Life.”.1

This article highlights the use of thalidomide in the management of patients with hereditary haemorrhagic telangiectasia (HHT) who present with epistaxis. The prevalence of HHT is thought to be between 1.5 and 2 persons per 10,000.2 HHT can be associated with other bleeding complications such as bleeding from the gastrointestinal tract and in particular the small bowel (SB). The existence of small bowel angioectasias (SBAs) has been reported to vary between 56% and 91% in the literature.3-6 The latter study by Ingrosso et al, also reports that patients with SBAs were considerably older.6

We have carried out a study at our tertiary centre for the management of patients with HHT where 10 patients (60% males) with genetically confirmed HHT were referred for the management of gastrointestinal related complications. The impact of small bowel capsule endoscopy (SBCE) and double balloon enteroscopy (DBE) was evaluated. The mean age at the first SB endoscopy was 62.6±SD14.4 years.

Patients had a total of 39 gastroscopies, 16 colonoscopies and 6 push enteroscopies. 7 patients underwent SBCE: 6 (85.7%) had proximal, 1 (11.1%) had mid and 3 (33.3%) patients had distal SBAs. 2 patients had a colon capsule which showed angioectasias.
Several DBEs were carried out in 6 patients (median 4; SD±6) with a mean of 130.5 ±SD133.3 days between DBEs. Fifty-seven SBAs were treated with argon plasma coagulation (APC) on average at each DBE. These procedures take an average of 75 minutes. Mean haemoglobin before and after the procedure were 93.8 and 102.1 g/dL respectively. (p=0.1) Six patients were transfusion dependent initially but 4 improved following intervention.

Need for transfusion resolved in 1 patient when started on lanreotide (a long acting somatostatin analogue), regular endoscopy and APC and in 2 patients on starting DBEs and APC. One patient passed away from pneumonia. Another patient was switched unsuccessfully from octreotide to lanreotide. She stopped being transfusion dependent with regular gastroscopies and APC. Another patient was unwilling to undergo further endoscopies due to multiple co-morbidities. He improved on lanreotide. In 2 patients, anaemia remains persistently problematic. One of them is also on deltaparin for SMVT. The other patient has recurrent epistaxis which makes it harder for him to have further endoscopies.

SBCE is a useful screening tool in patients with HHT to assess for SBAs. Although classed as invasive endoscopy, DBEs and APC can have a significant impact on mortality and quality of life of patients with HHT. Pharmacotherapy such as somatostatin analogues can additionally help to improve transfusion requirements. They have a good safety profile unlike thalidomide that can result in teratogenicity, peripheral neuropathy (50%), and thromboembolism.

References:
