Inhibition of human glutathione transferase P1-1 by novel benzazole derivatives

[İnsan glutatyon transferaz P1-1’in benzoazol türevleri tarafından inhibisyonu]

Yaman Musdal1,
Tugba Ertan-Bolelli2,
Kayhan Bolelli2,
Serap Yılmaz2,
Deniz Ceyhan1,
Usama Hegazy3,4,
Bengt Mannervik5,6,
Serap Yılmaz3,
Yasemin Aksoy1

1Hacettepe University, Faculty of Medicine, Department of Medical Biochemistry, Ankara, Turkey
2Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Tandogan 06100, Ankara, Turkey
3Department of Chemistry-BMC, Uppsala University, Box 576, SE-75123 Sweden
4Molecular Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Cairo, Egypt
5Department of Neurochemistry, Stockholm University, SE-10691 Stockholm, Sweden
6Engineering and Biotechnology Division, National Research Centre, Dokki, Cairo, Egypt

ABSTRACT

Objective: Glutathionetransferases (GST) are multifunctional enzymes involved in detoxification, drug resistance, cell signaling and apoptosis. The inhibitory effects of novel benzazole derivatives were tested on human GST P1-1 to find new agents for overcoming drug resistance in cancer cells.

Methods: GST P1-1 was heterogeneously expressed in E. coli strain XL-1 Blue and purified using S-hexylglutathione-Sepharose 6B affinity chromatography. The effect of 33 potential inhibitors on enzymatic activity was assayed spectrophotometrically with 1-chloro-2,4-dinitrobenzene (CDNB) as well as with the alternative substrate phenethyl isothiocyanate (PEITC).

Results: Compound-18 (N-[2-(4-chloro-benzyl)-benzoazol-5-yl]-4-nitro-benzensulfonamide) was the most potent inhibitor found with an IC50 value of approximately 10 µM with respect to CDNB and a somewhat less strong inhibitor (45% inhibition at 40 µM) with PEITC as substrate. Compound-18 showed mixed inhibition with GSH and uncompetitive inhibition with CDNB with the K values 6.3 ± 0.7 µM and 11.8 ± 3.4 µM, respectively.

Conclusion: Compound-18 is a potent inhibitor of GST P1-1. It may serve as a lead for further chemical modifications for increased potency. Additional studies will elucidate the effects of the inhibitor on cancer cells.

Key Words: GST P1-1, enzyme inhibition, benzazole derivatives, anti-cancer drugs

ÖZET

Amaç: Glutatyon transferazlar detoksifikasyon, ilaç direnci, hücre sinyalizasyonu ve apoptozda görev alan çok fonksiyonlu enzimlerdir. Benzoazol türevi bileşiklerin GST P1-1 üzerindeki inhibitör etkilerine bakılarak kanser hücrelerinde oluşan ilaç direncinin ortadan kaldırılması sağlayabilecek yeni inhibitörlerin bulunması hedeflenmektedir.

Yöntemler: GST P1-1, E. coli suçu XL-1 Blue’da ekspresi edildi ve S-heksigli glutatyon-Sepharose 6B afinite kromatografisi kullanılarak saflaştırıldı. Toplam 33 tane bileşinin potansiyel inhibitörlü vaktleri spektrofotometre ile 1-klor-2,4-dinitrobenzene (CDNB) ve alternatif olarak fenetil izotiyosiyanat (PEITC) substratları ile çalışıldı.

Bulgular: Bileşik-18 (N-[2-(4-kloro-benzil)-benzoksazol-5-il]-4-nitro-benzensülfonamit), GST P1-1 üzerinde yaklaşık 10 µM IC50 değeri ile CDNB‘ye göre kuvvetli bir inhibitör, PEITC’de de daha az kuvvetli bir inhibitör (40 µM’dan % 45 inhibitörlü) bileşiktir. Ayrıtelen GSH substratına göre kafa tip inhibitörlü (IC50 = 6.3 ± 0.7 µM), CDNB‘ye göre de unkompetitif inhibitörlü (IC50 = 11.8 ± 3.4 µM) göstermektedir.

Sonuç: Bileşik-18 GST P1-1 için kuvvetli bir inhibitördür. Bu molekül inhibitörlü potansiyel etkisini artırmada kimyasal modifikasyonlar için önçül bileşik olabilir. İnhibitörün kanser hücrelerinde etkilerini açığa çıkartabilmek için ileri çalışmalarla ihtiyaç duyulmaktadır.

Anahtar Kelimeler: GST P1-1, enzim inhibisyonu, benzoazol türevleri, anti-kanser ilaçlar

Çıkar Çatışması: Yazarlar arasında çıkar çatışması bulunmamaktadır.
Introduction

Glutathione transferases (GSTs; EC 2.5.1.18) are multifunctional enzymes that are involved mainly in detoxication of endogenously produced and xenobiotic compounds in living organisms. These enzymes catalyze the conjugation of the reduced form of glutathione (GSH) to electrophilic centers of hydrophobic compounds [1]. GSTs are found in almost all organisms from mammals to plants and even in some prokaryotes. In mammalian cells seven classes of cytosolic GSTs (termed alpha, mu, pi, sigma, zeta, omega and theta) have been identified in dimeric forms [2]. Each subunit contains two active sites; one for specific binding of GSH and the other for relatively nonselective binding of hydrophobic substrates [3].

GSTs comprise a large family of isozymes with alternative functions. Apart from detoxication they also catalyze isomerase reactions in the metabolism of steroid hormone biosynthesis and amino acid degradation reactions [4, 5]. In addition, GSTs also have noncatalytic roles. They may function in the intracellular transport of non-substrate compounds like bilirubin, heme and steroids [6, 7] and have regulatory roles in cell signaling and apoptosis through the inhibition of c-Jun-N-terminal kinase [8].

GST P1-1, the most prevalent isozyme in mammalian organisms, is involved in the development of resistance to anti-cancer cells towards drugs, herbicides and pesticides [9-11]. It is suggested that this resistance is related to high expression of GST P1-1 in cancers such as breast, lung, colon pancreas and cervix thereby contributing to resistance to chemotherapy [12]. In order to overcome this resistance specific GST P1-1 inhibitors are in demand.

A variety of compounds can be identified in the literature as inhibitors of GST P1-1. Ethacrynic acid, TLK-286, 6-(7-nitro-1,2,3-benzoxadiazol-4-ylthio) hexanol (NBDHEX), Cibacron blue and bromosulfophthalein are known amongst the most potent ones [3, 13]. Of these, TLK-286 is a promising compound tested in Phase III clinical trials for ovarian cancers [14] and NBDHEX is a compound that may block interactions of GST P1-1 with c-Jun N-terminal kinase (JNK). However, additional inhibitors are in demand, since the toxicity of the known compounds limits their use in clinical and in vitro studies [13].

In the present study the inhibitory effects of a series of novel compounds containing benzothiazole and benzoxazole groups were studied with human GST P1-1. According to our results compound-18 (N-[2-(4-chloro-benzyl)-benzoxazol-5-yl]-4-nitro-benzenesulfonamide) was the most potent inhibitor. Further analysis and kinetic details are discussed.

Materials and Methods

Synthesis of compounds

The benzazole compounds containing benzothiazole and benzoxazole rings with small differences in the side chains were obtained from Ankara University Faculty of Pharmacy Department of Pharmaceutical Chemistry. The synthesis of these totally 33 benzazole compounds were published before [15-22].

Expression and purification of human GST P1-1

Recombinant hGST P1-1 was expressed in Escherichia coli strain XL-1 Blue at 37°C and purified by using S-hexylglutathione-Sepharose 6B [23]. E.coli XL-1 cells containing pKXHPI plasmid were grown overnight in 50 ml 2YT media (16 g tryptone, 10 g yeast extract, 5 g NaCl and 100 mg/liter ampicillin) and then transferred to 500 ml 2YT media and incubated at 37 °C in the shake incubator. Incubation was kept until the absorbance of the culture at 600 nm was 0.2-0.4. Then 0.2 mM isopropyl-β-D-thiogalactopyranoside was added to induce the expression of GST P1-1. The cells were incubated for 16 hr and then centrifuged at 7000 rpm for 7 minutes. The pellets were kept at -80 °C for 30 minutes. The pellets were resuspended in lysis buffer (10 mM Tris HCl, 1 mM EDTA, 0.2 mM dithiothreitol (DTT) pH 7.0 and protease inhibitor cocktail, 0.2 mg/ml lysozyme) and mixed gently on ice for 30 min and then disrupted by sonication 5 times for 20 seconds. Phenylmethanesulfonylfluoride (170 µM) was added and the supernatant fraction was obtained by centrifugation at 15000 rpm, 5 °C for 1 hr.

Epoxy-activated S-hexylglutathione-Sepharose 6B affinity matrix was used for purification of GST P1-1. The supernatant fraction was applied to the matrix equilibrated with binding buffer and stirred gently for 40 minutes on ice. The matrix containing bound GST P1-1 was washed with Buffer A (10 mM Tris HCl pH 7.8 1 mM EDTA, 0.2 M NaCl, 0.2 mM DTT) to eliminate non-bound proteins. The matrix was packed on top of a Sephadex G-25 column equilibrated with Buffer A in the cold room. The enzyme was then eluted with Buffer B (10 mM Tris HCl pH 7.8, 1 mM EDTA, 0.2 M NaCl, 0.2 mM DTT, 5 mM S-hexylglutathione). The fractions containing the GST activity were concentrated on ice and then dialyzed with Buffer A without NaCl. The purity of the enzyme was determined by SDS-PAGE applying both optimal and excessive protein amounts for analysis to visualize possible impurities.

GST assay and inhibition studies

GST activity was measured on a Shimadzu UV-2501 PC spectrophotometer by measuring the initial rate of absorbance change at 340 nm with CDNB [24]. Standard enzymatic assay conditions consisted of 0.1 M phosphate buffer, pH 6.5 containing 1 mM EDTA, 1 mM GSH, and 1 mM CDNB at 30 °C. The reaction system contained 5 % ethanol (from the CDNB stock solution), but the solvent had a negligible inhibitory effect on the enzyme activity. The enzymatic reaction was obtained by subtracting the nonenzymatic rate from the rate measured in the presence of enzyme.
The most potent compounds identified with CDNB were also tested spectrophotometrically with PEITC as substrate in a standard assay [25]. The molar absorption coefficient used for CDNB was $\Delta \varepsilon_{340} = 9.6 \text{ mM}^{-1} \text{ cm}^{-1}$ and for PEITC $\Delta \varepsilon_{274} = 8.89 \text{ mM}^{-1} \text{ cm}^{-1}$. The IC$_{50}$ value was determined as the concentration of the inhibitor that gives 50% inhibition of the enzymatic activity. For determining the inhibition type of compounds varied concentrations of GSH and CDNB were used. The compounds tested as inhibitors were prepared freshly in 2 mM stock solutions in 96% ethanol because of their sensitivity to light.

Data Analysis

All measurements were made in triplicate and each point on the graphs was given with standard deviation of the mean value. IC$_{50}$ and K$_i$ values of the compounds were determined by regression analysis using Graphpad Prism 4.0 software.

Results

Expression and purification of hGST P1-1

GST P1-1 was expressed in E. coli at 37 °C and purified by using S-hexylglutathione-Sepharose 6B. A total yield of 40 mg of protein per liter culture was obtained. The specific activity of the purified protein was 100 µmol min$^{-1}$ mg$^{-1}$ with CDNB as substrate. The final stock

<table>
<thead>
<tr>
<th>No</th>
<th>X</th>
<th>Y</th>
<th>R$_1$</th>
<th>R$_2$</th>
<th>R$_3$</th>
<th>R$_4$</th>
<th>GST P1-1 inhibition</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S</td>
<td>-</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-</td>
<td>HN–C$_2$H$_5$</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>S</td>
<td>-</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-</td>
<td>HN–C$_2$H$_5$–OCH$_3$</td>
<td>none</td>
</tr>
<tr>
<td>3</td>
<td>S</td>
<td>-</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-</td>
<td>HN–C$_2$H$_5$–CH$_3$</td>
<td>none</td>
</tr>
<tr>
<td>4</td>
<td>S</td>
<td>-</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-</td>
<td>HN–C$_2$H$_5$–Cl</td>
<td>none</td>
</tr>
<tr>
<td>5</td>
<td>S</td>
<td>-</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-</td>
<td>HN–C$_2$H$_5$–F</td>
<td>none</td>
</tr>
<tr>
<td>6</td>
<td>S</td>
<td>-</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-</td>
<td>HN–C$_2$H$_5$–NO$_2$</td>
<td>none</td>
</tr>
<tr>
<td>7</td>
<td>S</td>
<td>-</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-</td>
<td>HN–C$_2$H$_5$–Br</td>
<td>20 µM → 60 % inh.</td>
</tr>
<tr>
<td>8</td>
<td>S</td>
<td>-</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-</td>
<td>HN–C$_2$H$_5$–F</td>
<td>20 µM → 58 % inh.</td>
</tr>
<tr>
<td>9</td>
<td>S</td>
<td>-</td>
<td>CH$_2$O–</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>None</td>
<td>[16]</td>
</tr>
</tbody>
</table>

Figure 1. The chemical structure of compound-18 N-[2-(4-chloro-benzyl)-benzooxazol-5-yl]-4-nitro-benzenesulfonamide.

Figure 2. The inhibition profile of compound-18 on GST P1-1. The enzyme activity was determined in the presence 1 mM GSH, 1 mM CDNB at 30 °C under standard assay conditions.
Inhibition profile of compound-18 on GST P1-1 versus GSH. In the assay GST P1-1 activity was measured with varying concentrations of GSH and different inhibitor concentrations: (■) 0 µM, (○) 2.5 µM, (▼) 5 µM and (Δ) 10 µM. The electrophilic substrate CDNB was used at 1 mM concentration, which is near its solubility limit and close to half-saturation of the enzyme (cf. Figure 4).

Table 2. IC$_{50}$, K_i and inhibition type of compound-18 in the CDNB assay of GST P1-1.

<table>
<thead>
<tr>
<th>Compound</th>
<th>K_i^{GSH} (µM)</th>
<th>K_i^{CDNB} (µM)</th>
<th>GSH</th>
<th>CDNB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound-18</td>
<td>6.3 ± 0.7</td>
<td>11.8 ± 3.4</td>
<td>mixed</td>
<td>uncompetitive</td>
</tr>
</tbody>
</table>

Discussion

Inhibitors for GSTs have been investigated for more than forty years for different purposes. In the beginning they were used to understand the catalytic mechanism
and the active site topography of the enzymes, and even to distinguish between some of the isoenzymes in the GST family [26, 27]. However, today more advanced techniques like crystallography, mass spectrometry and gene sequencing are more accurate to reveal these functions. In recent years, studies of GSTs have revealed new roles for some of the members of this family. It has been demonstrated that GSTs of classes alpha, mu, and pi are involved in cell proliferation, differentiation and control of cell death via interactions with special signaling proteins [28-30]. In particular, GST P1-1 is overexpressed in some cancer cells and it has been suggested to cause drug resistance [31]. Therefore, the use of inhibitors to suppress the GST P1-1 activity in cancer cells is a promising method to overcome such drug resistance.

In the present study novel benzazole compounds containing benzoxazole and benzothiazole rings were examined for their effects on hGST P1-1 activity. According to our results some of the benzazoles with the benzoxazole ring exhibit inhibitory effects on hGST P1-1 (Table 1). Among these compounds the most potent inhibitor is compound-18 with an approximately 10 µM IC_{50} value according to CDNB substrate. This IC_{50} value is quite low and the compound was selected for further kinetic studies. For comparison earlier studied inhibitors give IC_{50} values of 5 µM for hematin, 6 µM for tributyltin bromide, and 20 µM for S-hexylglutathione [26].

In inhibition studies, it is useful to investigate the effects of the compounds with more than one substrate. For example, progesterone is not a inhibitor of GST P1-1 assayed with CDNB, but when ethacrynic acid is used as the substrate progesterone is a potent inhibitor (1.4 µM of IC_{50}) [32]. For this reason, the inhibitory effect was also studied with PEITC as substrate to evaluate the potency of the compound. Compound-18 shows an apparently somewhat lower potency versus PEITC with 45 % inhibition at 40 µM inhibitor concentration. On the other hand, the differences are not major considering that the PEITC concentration used (400 µM) corresponds to approximately 80% substrate saturation (based on a K_m values of 120 µM; [25]) as compared to 50% saturation with CDNB.

Further kinetic studies were done to determine how the inhibitor binds to GST P1-1 enzyme. Compound-18 is a mixed inhibitor with GSH and an uncompetitive inhibitor with CDNB characterized by K_i values 6.3 ± 0.7 and 11.8 ± 3.4 µM, respectively. This information indicates that compound-18 interacts not only with the GSH-binding site but also to other regions of enzyme.

Chemotherapeutic drugs can be used either alone or in combination with other compounds to counteract drug resistance in cancers [33, 34]. For both regimens, compound-18 is a good candidate to test on cancer cells. In initial studies, breast cancer cells with high expressions of GST P1-1 can be targeted in vitro with compound-18 alone to examined for effects on cell survival and apoptosis. In combination with alkylating drugs, known to be metabolized by GST P1-1, compound-18 can be tested for suppression of drug resistance.

In conclusion, we identified compound-18 as a potent inhibitor for GST P1-1. This is the first benzoxazole derivative published in literature as an inhibitor for GSTs. Further kinetic studies including inhibition effects on other GST isoenzymes are necessary to establish selectivity for GST P1-1. Structural studies by crystallography or other methods are needed to understand the particular interactions providing binding specificity of the compound. Using this information more effective compounds can be designed for in vitro and in vivo studies.

Acknowledgement

This study was supported by TUBITAK (The Scientific and Technological Research Council of Turkey) grant (Project No: 109S362). The work carried out in Bengt Mannervik’s laboratory was supported by the Swedish Cancer Society and the Swedish Research Council.

References

