Use of cone-beam computed tomography during management of a double-rooted maxillary lateral incisor: a 6-month follow-up case report

Selin Göker Kamalı, Şeyma Şentürk, Dilek Türkaydın, Yıldız Garip Berker

Department of Endodontics, Marmara University Faculty of Dentistry, İstanbul, Turkey

Successful non-surgical endodontic management depends on the elimination of infection and prevention of re-infection of the root canal system. However, missed canals and complex anatomic variations may cause endodontic failure. Maxillary lateral incisors frequently have a single root with a single radicular canal system. This case report describes the endodontic treatment of a two-rooted maxillary lateral incisor which was diagnosed using conventional radiography and cone beam computed tomography.

Keywords: Cone-beam computed tomography; double-rooted; maxillary lateral incisor; three-dimen-sional.

Case report
A 45-year-old female patient was referred to the Department of Endodontics, Marmara University, Istanbul, by her general dental practitioner for root canal retreatment of her upper right lateral incisor.

Enquiry into the patient’s medical history revealed that she was healthy and currently not using any medication. The patient reported a possible traumatic history a year ago.

No coronal morphological variation, caries, restoration, or discoloration was noted on initial clinical examination. The tooth was not sensitive to percussion. There was no evidence of swelling or sinus tract. Gingival probing depth and tooth mobility were within physiologic limits. The tooth did not respond to electric and thermal pulp sensibility tests. The tooth was diagnosed with asymptomatic apical periodontitis after radiographic evaluation which revealed that the maxillary right lateral incisor had two distinctive roots and radiolucency in the periapical region (Fig. 1a). CBCT examination confirmed that both
upper right and left lateral incisors had a second root canal showing a Vertucci class IV configuration (Fig. 2a, b).

After administration of local anesthetic and isolation using a rubber dam, an endodontic access cavity was prepared, and two separate canal orifices were found in the buccopalatal directions. Working lengths were determined using an electronic apex locator, and periapical radiograph with #10 K files was taken (Fig. 1b). The root canals were prepared using MTtwo NiTi files up to size 25/.06 under copious irrigation with 5.25% NaOCl. The root canals were dried with sterile paper points, and an interappointment dressing of calcium hydroxide paste (Calcicur; VOCO, Cuxhaven, Germany) was applied and the access cavity was restored with temporary restorative material (3M ESPE AG, Seefeld, Germany). One week later, the tooth was asymptomatic. After isolation with a rubber dam, the restorative material and cotton pellet were removed. #25 K file and 5.25% NaOCl irrigation were used to remove the calcium hydroxide paste. The root canals were irrigated with 5.25% NaOCl, 17% EDTA, and again NaOCl for the final irrigation and dried using sterile paper points. Root canals were obturated with gutta-percha and a resin based sealer (AH Plus, Dentsply, York, PA) (Fig. 1c, 2c).

Six-month Follow-up: The tooth was clinically asymptomatic. Periapical radiograph and CBCT imaging showed completely a healed lesion (Fig. 1d, 2d).

Discussion

Knowledge on the morphology of a root canal system is required for successful endodontic treatment. The incidence of two canals in maxillary lateral incisors is extremely rare. Vertucci has reported that maxillary incisors present a single root and single canal. However, numerous case reports have shown two,[7,8] three,[5] and even four[9,10] canals. Clinically, maxillary lateral incisors with anatomic variations often indicate a fusion,[11] gemination,[12] dens invaginatus,[10] or a palatogingival groove. There was no fusion or gemination in the present case. The tooth did not have a single larger crown, two crowns, or roots fused together.[13] Moreover, there was no evidence in relation to enamel or dentin invagination in the preoperative radiograph; therefore, dens invaginatus was not considered. Root duplication may occur following intrusive luxation of primary teeth.[14] However, traumatic injury of primary teeth was not an etiologic factor in the present case because two-rooted maxillary lateral incisors were found bilaterally.

The guidelines of the American Association of Endodontists, the American Academy of Oral and Maxillofacial
Radiology, and the European Society of Endodontology recommended the use of CBCT in various situations, including abnormal anatomy.[15,16] Therefore, cone beam computed tomography was used as a diagnostic tool by many authors for evaluating extra canals or roots.[9] In this case, CBCT scanning was used for three-dimensional analysis of the root canal system with detection of the location of roots. Buccal and palatinal canals were not clearly detectable on conventional radiographs because of superimposition. Moreover, during preparation of the endodontic access cavity, it was difficult to find the canal orifices because of Vertucci Type IV root canal system. Therefore, CBCT images were analyzed to avoid over-extension, gouging, and even perforation in our endodontic access cavity. As a consequence, CBCT was used for a thorough understanding of the root canal morphology.

Studies have shown that one-visit root canal treatment can create favorable environmental conditions for periapical repair similar to the two-visit therapy when calcium hydroxide was used as antimicrobial dressing.[17] However, in this case, prolongation of treatment duration because of a complex root canal system and trauma history led to the implementation of an interappointment dressing of calcium hydroxide.

In this case, the cold lateral condensation (CLC) technique was used. CLC is a very popular obturation technique; however, injectable gutta-percha and continuous wave of condensation fill the canal irregularities better than cold lateral condensation.[18] On the other hand, thermoplastic filling techniques like thermafill could not be used in the present case because if one of the root canals was filled with thermafill, the other canal orifice was closed with gutta-percha and the canal could not be filled.

Conclusion

Internal anatomic variations of the root canal system have a role in the success of endodontic therapy. Thereby, the clinician should be careful during radiographic evaluation and if necessary, should use three-dimensional imaging techniques.

Conflict of interest: None declared.

References