Management of Acute Respiratory Distress Syndrome with H1N1 Influenza Virus in Pregnancy: Successful Mechanical Ventilation and Weaning with Airway Pressure Release Ventilation

Mehtap Pehlivanlar Küçük 1, Çağatay Erman Öztürk 2, Nazan Köylü İlkaya 2, Selin Eyüpoğlu 2, Fatma Ülger 2, Ali Haydar Şahinoğlu 1
Department of Anaesthesiology and Reanimation, Division of Intensive Care Medicine, Ondokuz Mayıs University School of Medicine, Samsun, Turkey

ORCID IDs of the authors: M.P.K. 0000-0003-2247-4074; Ç.E.Ö. 0000-0001-6959-1695; N.K.I. 0000-0002-4891-0818; S.E. 0000-0003-2132-4605; F.Ü. 0000-0001-5366-532X; A.H.Ş. 0000-0002-2022-738X.

Introduction

The risk of H1N1 influenza-A complications are higher in some populations. During pregnancy, both the mother and fetus are at an increased risk when infected with H1N1 influenza-A. Most pregnant women have acute respiratory distress syndrome (ARDS) requiring mechanical ventilation. Airway pressure release ventilation (APRV) can be effective in the re-expansion of the collapsed lung tissue, and it can maintain the maximum alveolar re-expansion in patients with ARDS. We present a case of ARDS after an infection with H1N1 influenza A in a 33-year-old patient pregnant at 27-weeks. The ARDS was successfully managed by airway pressure release ventilation (APRV). APRV can be used successfully as an alternative to conventional mechanical ventilation modes in pregnant patients experiencing severe respiratory failure.

Keywords: Acute respiratory distress syndrome, pregnancy, airway pressure release ventilation, influenza-A

Abstract

In pregnancy, infection with H1N1 influenza virus may produce symptoms similar to infection with seasonal influenza virus. Patients may rarely come with a clinical condition causing severe acute respiratory distress syndrome (ARDS) and death. Therefore, mechanical-ventilation strategies to manage these events are vital. We report a case of ARDS after an infection with H1N1 influenza A in a 33-year-old patient pregnant at 27-weeks. The ARDS was successfully managed by airway pressure release ventilation (APRV). APRV can be used successfully as an alternative to conventional mechanical ventilation modes in pregnant patients experiencing severe respiratory failure.

Keywords: Acute respiratory distress syndrome, pregnancy, airway pressure release ventilation, influenza-A

Case Presentation

A 33-year-old, 27-week pregnant woman presented to a health institution with complaints of fever, fatigue, malaise and dyspnoea. Upon physical examination in the emergency department, there were no abnormal findings except for rales at the base of both lungs. A chest X-ray showed bilateral scattered bronchopneumonia (Figure 1).

The patient was admitted to the Infectious Diseases Department with a pre-diagnosis of H1N1 influenza-A virus pneumonia/community-acquired pneumonia. Polymerase chain reaction test of a throat swab sample was positive for H1N1 influenza. Laboratory test results were as follows: white blood cell count: 2,400 µL⁻¹, C-reactive protein: 13.8 mg dL⁻¹, sedimentation rate: 33 mm h⁻¹, arterial blood gas analysis pH: 7.51, pO₂: 57.7 mmHg, pCO₂: 28.7 mmHg, base excess (BE): -0.8 mmol L⁻¹, HCO₃⁻: 24.4 mmol L⁻¹ and SpO₂: 87.5%. Treatment with intravenous twice-daily 1 gr ceftriaxone (Food and Drug Administration [FDA] pregnancy-related drug category B), 250 mg azithromycin (FDA category B) and per-oral 75 mg oseltamivir (FDA category C) twice daily was initiated. Oxygen therapy was started. On the second day of follow-up, the patient experienced increased respiratory distress and desaturation. After few hours following the chest X-ray, she was admitted to the Intensive Care Unit (ICU) with bilateral pulmonary infiltrates, completely covering the middle and lower zones of both lungs and wiping the heart borders (Figure 2). Both lungs had rales in the lower
two-thirds, and bronchial breath sounds were identified in the left lung base. The patient’s APACHE-II score was 14 and SOFA score was 11 upon ICU admission. A treatment plan was formed considering severe ARDS with rapidly progressive bilateral pulmonary infiltrates and a PaO₂/FiO₂ ratio of 53.

Despite a high flow (8–10 L min⁻¹) of oxygen and a non-invasive ventilation (NIV) treatment, on the second day of ICU follow-up, the patient needed intubation due to the deterioration of the respiratory pattern and blood gas values during NIV (pH: 7.48, pO₂: 59.7 mmHg, pCO₂: 25.7 mmHg, BE: -8.7 mmol L⁻¹, HCO₃⁻: 20.0 mmol L⁻¹ and SpO₂: 82%). High positive end-expiratory pressure (PEEP) in the conventional mode was attempted for a short time, at the maximal level of 10 cmH₂O, but it produced no response and caused haemodynamic deterioration. Consequently, the APRV mode was applied. A mechanical ventilator support was initiated using the following settings: Pₘₚₑ₉: 28 cmH₂O, Pₘₚₐ₉: 0 cmH₂O, Tₘₚₑ₉: 4.0 sec, Tₘₚₐ₉: 0.8 sec, I/E: 5/1, and FiO₂: 80%.

Maintaining the peak inspiratory level below 30 cmH₂O was aimed. Sedation and analgesia were achieved with propofol 2 mg kg⁻¹ h⁻¹, midazolam 0.05 mg kg⁻¹ h⁻¹ and fentanyl 1 µg kg⁻¹ h⁻¹. Mechanical ventilation was continued for 8 days. After 24 hours of APRV application, significant improvements were observed in oxygenation and chest X-ray findings (Figure 3).

On her sixth day of hospitalization, the patient had a fever of 38.1°C; hence, meropenem (FDA category B) was added to the treatment. As the blood culture was positive for Staphylococcus epidermidis, teicoplanin (FDA category C) was also added to the treatment.

Over several days, the ventilator support was gradually reduced to Pₘₚₑ₉: 15 cmH₂O, Pₘₚₐ₉: 0 cmH₂O, Tₘₚₑ₉: 10.0 sec, Tₘₚₐ₉: 0.8 sec and FiO₂: 35% (Table 1). On the tenth day, the patient was extubated after continuous positive airway pressure training using t-tube. During her stay in ICU, there were no pathological conditions in terms of the pregnancy or foetus. At 39 weeks gestation, the patient underwent an uncomplicated, elective caesarean delivery of a healthy infant under general anaesthesia.

Discussion

Since the 2009 H1N1 influenza-A pandemic, pregnancy has been considered among the major risk factors that increase the morbidity and mortality rates. Influenza virus infection symptoms are often attributed to pregnancy, which may cause delays in diagnosis and treatment. In cases of severe ARDS, the strategy of low tidal volume (6 mL kg⁻¹, using the patient’s ideal weight) may be insufficient to restore appropriate arterial oxygenation. Furthermore, there are concerns for foetal CO₂ transport and foetal acidaemia secondary to the maternal acidaemia due to permissive hypercapnia (1). It can be assumed that pCO₂ levels below 60 mmHg do not cause adverse foetal effects but values above this should be avoided (while maintaining maternal pH values of 7.25-7.35). For adequate foetal oxygenation, maternal pO₂ should be higher than 70 mmHg (2).

Airway pressure release ventilation is a type of inverse-ratio, pressure-controlled, intermittent mandatory ventilation
mode. APRV contains a prolonged continuous high-pressure phase \(P_{\text{high}} \) followed by a short release phase \(P_{\text{low}} \), thus creating an inverse-ratio ventilation strategy. Spontaneous breathing can occur at any time during the respiratory cycle. The goal of ventilation with APRV is to remain on the steep portion of the compliance curve between the lower and upper inflection points to prevent atelectrauma and barotraumas. This can be achieved by setting the \(P_{\text{high}} \) limit below the upper inflection point on the curve and limiting the release time, thus creating an intentional auto-PEEP (3).

We selected the APRV mode as the primary mode of ventilation because of its ability to rapidly correct oxygenation, enable the patient to breathe spontaneously, reduce sedation requirements, improve the ventilation/perfusion \(V/Q \) ratio and enhance cardiac performance. The APRV mode enables a pregnant patient’s average airway pressure to be increased without large pressure changes. It also causes continuous distension pressure, which increases the gas exchange in the alveolar fluid, thereby easily achieving the desired result by preventing de-recruitment of alveoli (4, 5). In a study of APRV, Li et al. (6) showed that it decreased central venous pressure and systemic vascular resistance, increased cardiac index, improved central venous oxygen saturation and decreased sedation requirements and ICU stay. The major difference between APRV and conventional modes is that in this mode, the mean inspiratory pressure is maximised, and the end-expiratory pressure is due to intentional auto-PEEP (7). The major advantages over other modes of conventional ventilation are the preservation of spontaneous unassisted ventilation throughout the entire ventilation cycle and maintenance of long inflation time (8).

However, data related to the use of APRV mode in pregnancy are scarce. In 2009, Hirani et al. (9) presented two cases of successful treatment of ARDS developed during pregnancy. In 2010, Zen et al. (10) used APRV mode to successfully treat a 25-year-old woman who was 30 weeks pregnant and had severe ARDS. Finally, Folk et al. (11) suggested that APRV may be a good option for pregnant patients.

During mechanical ventilation, balanced sedation must be applied to allow spontaneous breathing and enable the patient to cooperate. Although APRV reduces the need for sedation, it may still be needed, particularly in the acute phase. The FDA defined the pregnancy categories of fentanyl, propofol and benzodiazepines used for our patient, as categories C, B and D, respectively. However, some studies have reported the use of drugs according to their benefit and harm to critically ill patients (12, 13). After birth, the mother and child were followed for any long-term effects of the sedative/analgesic drugs. The mother is healthy, and the baby is 8 months old and in a normal growth percentile.

Conclusion

Pregnancy causes physiological changes that make respiratory management more difficult, especially when the lung compliance decreases due to ARDS. In pregnant women with ARDS due to H1N1 influenza-A, APRV may be used as an alternative to conventional mechanical ventilation modes as it allow spontaneous ventilation while recruiting collapsed lung areas.

Informed Consent:
Written informed consent was obtained from patient who participated in this case.

Peer-review:
Externally peer-reviewed.

Author Contributions:

Conflict of Interest:
No conflict of interest was declared by the authors.

Financial Disclosure:
The authors declared that this study has received no financial support.

Table 1. Configuration of APRV mode and blood gas analyses

<table>
<thead>
<tr>
<th>Day</th>
<th>Mod</th>
<th>(\text{PaO}_2/\text{FiO}_2)</th>
<th>(P_{\text{high}}) cmH20</th>
<th>(P_{\text{low}}/\text{FiO}_2) cmH20</th>
<th>(\text{T}_{\text{high}}/\text{sec})</th>
<th>(\text{T}_{\text{low}}/\text{sec})</th>
<th>(\text{pH})</th>
<th>(\text{pO}_2/\text{mmHg})</th>
<th>(\text{pCO}_2/\text{mmHg})</th>
<th>(\text{BE})</th>
<th>(\text{SO}_2) lt/O2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mask O2</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td>7.42</td>
<td>32.6</td>
<td>38</td>
<td>-1</td>
<td>86</td>
<td>8–10</td>
</tr>
<tr>
<td>2, second hour</td>
<td>APRV</td>
<td>101</td>
<td>28</td>
<td>0</td>
<td>4.0</td>
<td>0.8</td>
<td>7.37</td>
<td>81.9</td>
<td>41.3</td>
<td>-2</td>
<td>94</td>
</tr>
<tr>
<td>2, sixth hour</td>
<td>APRV</td>
<td>121</td>
<td>28</td>
<td>0</td>
<td>4.0</td>
<td>0.8</td>
<td>7.36</td>
<td>85.3</td>
<td>41.8</td>
<td>-2</td>
<td>94</td>
</tr>
<tr>
<td>3</td>
<td>APRV</td>
<td>308</td>
<td>25</td>
<td>0</td>
<td>4.0</td>
<td>0.8</td>
<td>7.37</td>
<td>185</td>
<td>40.2</td>
<td>-2</td>
<td>96</td>
</tr>
<tr>
<td>4</td>
<td>APRV</td>
<td>370</td>
<td>20</td>
<td>0</td>
<td>6.0</td>
<td>0.8</td>
<td>7.48</td>
<td>185</td>
<td>38</td>
<td>3.1</td>
<td>98</td>
</tr>
<tr>
<td>5</td>
<td>APRV</td>
<td>640</td>
<td>17</td>
<td>0</td>
<td>8.0</td>
<td>0.8</td>
<td>7.49</td>
<td>192</td>
<td>33.4</td>
<td>4.9</td>
<td>98</td>
</tr>
<tr>
<td>6</td>
<td>APRV</td>
<td>513</td>
<td>15</td>
<td>0</td>
<td>10.0</td>
<td>0.8</td>
<td>7.51</td>
<td>154</td>
<td>39.8</td>
<td>6.8</td>
<td>99</td>
</tr>
</tbody>
</table>

APRV: Airway pressure release ventilation; BE: base excess; \(P_{\text{high}} \): pressure high; \(P_{\text{low}} \): pressure low; \(T_{\text{low}} \): time low; \(T_{\text{high}} \): time high
References

