Fine Needle Diathermy for Corneal Neovascularization: Initial Results
Korneal Neovaskülerizasyonlarda İnce İğne Diatermi: İlk Sonuçlarımız

Osman ŞALKACI,¹ Ümit ÇALLI,¹ Baran KANDEMİR,¹ Taha AYYILDIZ²

¹Department of Ophthalmology, Kartal Dr. Lütfi Kırdar Training and Research Hospital, İstanbul, Turkey
²Department of Ophthalmology, Haydarpaşa Numune Training and Research Hospital, İstanbul, Turkey

Summary

Background: The present study is a report of first results of fine needle diathermy (FND) procedure, the method of treatment preferred in our clinic for patients with corneal neovascularization.

Methods: FND was performed on 34 eyes with corneal neovascularization in 34 patients. Anterior segment color photos were taken of all patients before and after the procedure. Visual acuity and vascularization size and depth before and after procedure were compared. Number of procedures and complications were noted.

Results: Causes of vascularization were lipid keratopathy with unknown primary pathology in 12 patients, herpetic keratitis in 9, bacterial keratitis in 6, corneal graft rejection in 3, fungal keratitis in 2, alkaline burn in 2, and trauma in 1 patient. All vessels were successfully occluded in 15 patients. In 7 patients, 75% of treated vessels were occluded, and 50% of treated vessels were occluded in 5 patients. FND was performed twice on 12 patients and 3 times on 4 patients. In some cases, additional procedures were successful, and in others it was determined to be insufficient.

Conclusion: FND is a safe and effective treatment for corneal neovascularization in some patients; however, in some cases, the procedure is only partially effective.

Keywords: Corneal neovascularization; fine needle diathermy; occlusion.

Özet

Amaç: Bu çalışmada kliniğimizde korneal vaskülerizasyonu bulunan hastalarda tercih ettigimiz ve uyguladığımız ince İİD yönteminde ilk sonuçlarımız bildirme amacılıdik.

Gereç ve Yöntem: Otuz dört hastanın korneal neovaskülerizasyonu olan 34 gözüne İİD uygulandı. İşlem öncesi ve sonrası tüm hastalara ön segment renkli fotoğrafi çekildi. Hastalarda görme keskinliği, vaskülerizasyon yaygınlığı ve derinliği işlem öncesi ve sonrasıda karşılaştırılarak ve uygulama sayılan, komplikasyonlar kaydedildi.


Sonuç: İİD iğne diatermi ile seçilmiş hastalarda korneal neovaskülerizasyon tedavisinde çok başarılı sonuçlar elde edilmedi, bu yöntem bazı hastalarda ise kismen yetersiz kalmaktadır.

Anahtar sözcükler: İİD, korneal neovaskülerizasyon; okluzyon.
Introduction

In order to maintain corneal transparency and optimal visual acuity, the cornea must remain avascular. Avascularity also ensures that the cornea retains its immune privilege. Corneal neovascularization is a threat can develop as a response to infection, hypoxia, trauma, limbal stem cell deficiency, or as a component of corneal disease or the healing process. Corneal vessels aid in the transport of materials necessary for immune cells, regeneration of the cornea, delivery of antibiotics to an infected area, and the removal of metabolites. When the healing process is complete, however, blood flow in corneal vessels may continue and impair corneal transparency and ability to limit local immune and inflammatory responses, constituting a risk factor for rejection and corneal graft inadequacy in cornea transplant patients. As has been demonstrated in many studies, treatment of neovascularization before corneal transplantation prolongs graft life. Many agents and methods such as steroids, radiation, cystine, cryotherapy, and dextran have been used to occlude corneal vessels. Ophthalmologists have also used argon laser and 577-nm yellow dye laser to occlude corneal vessels and have reported successful outcomes. The present study is a report of experience with fine needle diathermy (FND), the method used in our clinic to treat patients with corneal neovascularization.

Patients and Methods

FND was performed on 34 patients with corneal neovascularization. All patients provided written, informed consent before enrollment in the study. The principles of the Second Declaration of Helsinki were observed, and approval of the Kartal Dr. Lütfi Kırdar Training and Research Hospital Ethics Committee was obtained. Etiological factors, extent, and depth of vascularization were noted. Before and after the procedure, color photos of anterior segment were taken. Pre- and post-procedural visual acuity and degree of vascularization were compared, the number of procedures, and related complications were recorded.

For all statistical analyses, SPSS software (version 17.0; SPSS Inc., Chicago, IL, USA) was used. Postprocedural changes in visual acuity relative to preprocedural measurements were analyzed using paired sample t-test.

Fine needle Diathermy Technique

Topical anesthesia was achieved with eye drops containing proparacaine hydrochloride ophthalmic solution. For FND procedure, a 10–0 nylon suture needle was inserted 0.5 to 1 mm from limbus in order to avoid traumatizing stem cell, and passed parallel to and at same depth as the blood vessel(s) to be occluded. Probe of unipolar diathermy unit at lowest setting (i.e., coagulation mode) was applied to the needle for 1 to 2 seconds until corneal stroma whitened. The same technique was used on all areas of vascularization.

Figure 1. (a) Vascularized cornea seen before fine needle diathermy. (b) Microphotograph of the cornea of same patient after fine needle diathermy procedure and implantation of cultivated limbal stem cell. (c) Microphotograph of the cornea of same patient after fine needle diathermy procedure as cultivated limbal stem cell was implanted. (d) Vascularized cornea before fine needle diathermy. (e) Intrastromal bleeding after diathermy. Colored images can be seen in online issue of the journal (www.keahdergi.com).
After the procedure, ofloxacin and loteprednol eye drops were applied to the affected eyes of the patients 4 times a day for 1 week. Patients were also started on prophylactic topical asiviral ophthalmic ointment treatment if condition was sequela of herpes simplex keratitis. Effectiveness of FND and related complications were evaluated on postprocedural first day, at first and second week, and at first and third month (Figure 1).

Results
The study population consisted of 24 male and 10 female patients, with an overall mean age of 43.3±13.3 years (range: 5–68 years). Etiologies of vascularization included lipid keratopathy with unknown primary pathology, herpes keratitis (n=9), bacterial keratitis (n=6), graft rejection (n=3), fungal keratitis (n=2), alkaline burn wound (n=2), and a traumatic event (n=1). Vascularization involved 4 quadrants (n=5), 3 quadrants (n=3), 2 quadrants (n=12), and 1 (n=14) quadrant in respective number of patients. Superficial (n=19), deep (n=8), and both deep and superficial (n=6) vascularization was detected. In 15 patients, all vessels treated were occluded, while 75% and 50% of vascularized vessels could be occluded in 7 and 5 patients, respectively. In 7 patients, previously occluded vessels recanalized during follow-up period. Patients underwent FND procedure for a second time (n=12) and a third (n=4) time. Subsequent response in some of these patients was not satisfactory. Two patients underwent cultivated limbal stem cell transplantation following FND procedure. Mean pre- and postprocedural visual acuity of the patients were 2±0.85 logMAR and 1.34±0.81 logMAR, respectively, with a statistically significant difference between them (paired sample t-test; p=0.037). Intrastromal bleeding was observed, but complication resolved without sequelae. In 2 patients, fluid leakage from anterior chamber was seen and repaired with a single suture in 1 patient and 2 sutures in the other patient.

Discussion
Numerous medical agents have been used in the treatment of corneal neovascularization. Corticosteroids have been accepted as standard treatment for active corneal neovascularization. Even though they were found to be particularly effective in corneal neovascularization associated with cornea transplants, they are not effective in cases of stable corneal neovascularization. Because long-term steroid use has been associated with various complications (e.g., cataract, glaucoma, opportunistic infection), alternative treatments have been researched. Nonsteroidal anti-inflammatory drugs (NSAIDs) have also been used in the treatment of corneal neovascularization; however, varying effectiveness and occasionally serious side effects such as corneal ulceration have limited clinical use.

Thermal coagulation and occlusion of vessels can also be done using laser beams. Cherry and Garner used corneal argon laser photocoagulation (CALP) on 4 patients for treatment of chemical burn (n=2) and herpetic keratitis (n=2), and reported 2 failures, 1 partial success, and 1 complete success. In another study, Marsh et al. followed 41 patients who had undergone CALP for lipid keratopathy, and after 9 months they found decrease in corneal opacity in 28 patients, and increase or stabilization in visual acuity in 33. Niranraki and Baer reported successful outcomes in patients who had undergone CALP procedure for deep corneal neovascularization. Baer et al. used 577 nm yellow dye laser and reported reversal of graft rejection in 25 eyes of 23 patients and 68% decrease in corneal neovascularization. The authors did not, however, find CALP procedure effective in cases with diffuse corneal neovascularization. Due to complications such as iris atrophy and pupillary ectasia, as well as risk of accidental photocoagulation of fovea, CALP has limited use in clinical practice.

FND is a promising surgical procedure in the treatment of corneal neovascularization. In various investigations, the treatment has been reported to be an effective, safe method for the occlusion of target vessels. As indicated in the literature, FND can also reverse corneal rejection. Pillai et al. used FND on 4 patient groups (median follow-up period of 10.3 months). In Group 1 (n=4), high-risk patients had received FND therapy before keratoplasty, and the authors reported no instance of rejection during a minimum postoperative follow-up period of 9 months. In Group 2, they achieved 100% vascular occlusion and stable scar formation in patients (n=2) with progressive lipid keratopathy. In Group 3, regression of all neovascularization and reversal of rejection reaction were observed in 4 patients. The 4 patients of Group 4 had inflamed disciform scar and saw inflammation resolved with no recurrence. As a complication, they reported intrastromal bleeding in only 3 patients. In
the present study, corneal neovascularization was successfully occluded or regressed after FND procedure, corneal transparency improved, and visual acuity increased. In some patients, success level was improved after additional FND procedures, while in other patients, the desired level of response couldn’t be achieved even after 3 attempts. These findings suggest that FND can be combined with topical ranibizumab or bevacizumab treatment.

In a study, Stevenson et al. applied topical 1% ranibizumab on 9 eyes of 9 patients, and 1% bevacizumab on 20 eyes of 20 patients 4 times a day for 3 weeks. Corneal neovascularization decreased approximately 39.8%, and 55.3% at 3rd and 16th weeks, respectively. Neovascularization decreased more slowly (approximately 27.9% and 45.5% at 6th and 24th weeks, respectively) in the bevacizumab group. No ocular or systemic complications were observed. This result was interpreted as an effective and reliable outcome. Koenig et al. reported 80% decrease in neovascularization with topical application of 5 daily doses of 0.5% ophthalmic bevacizumab solution on 30 patients. In another study, Kim et al. reported 70% decrease in corneal neovascularization with topical application of 1.25% bevacizumab ophthalmic solution twice a day. Diverse outcomes have been obtained with application of ophthalmic medication of various concentrations and dosage schedules. Universally accepted and optimized concentration and application frequency have not yet been established.

In conclusion, even though FND has been found to be a safe and effective procedure in selected patients, it can be ineffective in other patients. It is the opinion of the authors that use of topical bevacizumab or ranibizumab may increase effectiveness of the procedure. Additional studies performed with larger number of patients are needed to shed further light on this issue.

Conflict of interest
None declared.

References