Successful management with bisphosphonate treatment in a child with tuberculosis-associated hypercalcemia

Suna Kilinc,1 Ozlem Bostan,2 Meltem Erol,2 Saide Erturk,3 Damla Dilek,2 Ozgul Yigit2

1Department of Pediatric Endocrinology, Istanbul Bagcilar Training and Research Hospital, Istanbul, Turkey
2Department of Pediatrics, Istanbul Bagcilar Training and Research Hospital, Istanbul, Turkey
3Department of Pediatrics, Istanbul Esenler Obstetrics and Pediatrics Hospital, Istanbul, Turkey

ABSTRACT

Hypercalcemia is a common metabolic abnormality in children and generally occurs due to hyperparathyroidism, vitamin D toxicity, some genetic disorders and malignant diseases. Granulomatous diseases are a rare cause of hypercalcemia in children, which are usually mild and asymptomatic. Severe hypercalcemia in granulomatous diseases has also been reported in the literature. Here, we report a child presenting with severe hypercalcemia secondary to miliary tuberculosis with successful management with bisphosphonate treatment.

Keywords: Bisphosphonates; hypercalcemia; miliary tuberculosis; pamidronate-disodium.

Cite this article as: Kilinc S, Bostan O, Erol M, Erturk S, Dilek D, Yigit O. Successful management with bisphosphonate treatment in a child with tuberculosis-associated hypercalcemia. North Clin Istanb

Hypercalcemia is a common metabolic abnormality in children. Hyperparathyroidism, vitamin D toxicity and some endocrinopathies are the most frequent causes of hypercalcemia. Granulomatous disorders, such as tuberculosis and sarcoidosis, are a rare cause of hypercalcemia in the childhood period in which is usually mild and asymptomatic [1, 2]. Severe hypercalcemia in granulomatous diseases has also been reported in the literature. Here, we report a child presenting with severe hypercalcemia secondary to miliary tuberculosis in whom hypercalcemia resolved with bisphosphonate treatment.

CASE REPORT

A 16-months-old female patient admitted to our hospital with a 3-days history of fever, fatigue and poor appetite. On examination, she was cachectic and lethargic. Height was 63.5 cm (less than the third percentile), weight was 6.150 g (less than the third percentile), and head circumference was 45 cm (3–10 percentile). A systemic examination revealed bilateral coarse crackles throughout both lung fields and hepatosplenomegaly. Laboratory tests are summarized in Table 1. The total calcium and the ionized calcium levels were elevated (18.3 mg/dL, N: 9–11; 4.57 mmol/L, N:1.12–1.32, respectively). The phosphate level was 4.4 mg/dL (N: 3.4–6) within the normal range. There was neither a report history of excessive calcium or vitamin D intake nor consumption of thiazides. Alkaline phosphatase was 131 U/L (N: 5–281), 25-hydroxy vitamin D was 133 ng/mL (N: 30–70), and parathyroid hormone level was decreased 1.2 pg/mL (N: 15–65). The 1,25-dihydroxy-vitamin D3 level was also high at 345 pg/mL (N: 21–
Random urinary calcium/creatinine ratio was high at 1.25 (N:<0.5) and there was nephrocalcinosis in renal ultrasonography. Intravenous hydration with normal saline and furosemide therapy was started on admission, but the serum calcium level remained elevated above the upper normal limit. Consequently, she received an infusion of 0.5 mg/kg pamidronate-disodium for two doses with no side effects observed, and her serum calcium gradually decreased to 11.3 mg/dL. A chest radiograph demonstrated opacities and interstitial infiltrates bilaterally; hence, computed tomography of the lungs was performed. This revealed widespread pulmonary opacities and confluent consolidation with multiple calcified lymph nodes and parenchymal mass with cavitary lesions bilaterally, with more extensive changes on the left.

Calcium metabolism disturbances are one of the most common metabolic disorders in childhood. Hyperparathyroidism, vitamin D toxicity, various genetic disorders, malignant diseases and endocrinopathies, such as thyrotoxicosis and Addison’s disease, account for the most of cases of hypercalcemia in children. Although the majority is asymptomatic and mostly develops in adults, hypercalcemia is also known to occur in granulomatous diseases, including tuberculosis [1]. The incidence of hypercalcemia in patients with active tuberculosis is thought to be between 6%-48%, differs widely between countries because of disparity in vitamin D and calcium intake and the degree of sunlight exposure, which affects the calcium metabolism. Although in children incidence
is unknown, symptomatic hypercalcemia in tuberculosis is less common, with rates of 3% in adults [3].

We also searched a literature review of published cases of hypercalcemia with a diagnosis of tuberculosis in children. There have been only 11 cases of tuberculosis described in the literature resulting in symptomatic hypercalcemia [2, 4-10]. Only two of them had miliary tuberculosis [6, 7]. Hypercalcemia was developed before anti-tuberculosis treatment in seven patients, although developed during the therapy in the other four patients [2, 4-10]. Intravenous fluids, corticosteroids and furosemide were commonly used to resolve the hypercalcemia in most of the patients. In our patient, hypercalcemia did not improve despite intravenous hydration with normal saline and furosemide. However, our patient had a favorable response to pamidronate-disodium with normalization of serum calcium level. Although systemic glucocorticoids are commonly used in the management of severe hypercalcemia, no steroids were administered to our patient because of unknown etiology of hypercalcemia at initial. Besides this, recent studies reveal that pamidronate-disodium is more effective than glucocorticoids in the treatment of children with severe hypercalcemia secondary to vitamin D intoxication or increased vitamin D effects [11, 12]. Therefore, pamidronate-disodium can be an effective alternative to glucocorticoids to treat severe hypercalcemia in patients with a suspicion of tuberculosis.

The mechanism underlying hypercalcemia in tuberculosis is thought to be related to overproduction of 1,25(OH)2D3 by alveolar macrophages [13]. However, tuberculosis-associated hypercalcemia has also been reported in patients with normal and low levels of serum 1,25(OH)2D3 [4]. This situation waiting to be enlightened why some patients develop hypercalcemia with normal or low serum 1,25(OH)2D3 and some none. Although it is not clear supplementation of vitamin D or calcium and excessive sunlight exposure may be the other causes that lead to developing hypercalcemia in tuberculosis [6]. Our case, who had no history of vitamin D or calcium intake, had an elevated 25-(OH)D3 and 1,25(OH)2D3. Hence, the cause of the hypercalcemia was attributed to extra-renal 1-alpha hydroxylase activity in the alveolar macrophages.

Severe hypercalcemia, usually considered to be a serum calcium measurement of 14 mg/dl (>3.5 mmol/L) is a medical emergency with life-threatening consequences [14]. It is important for clinicians to be familiar with the diagnosis, management and underlying causes of hypercalcemia. This case report emphasizes the rarity of symptomatic hypercalcemia in children with tuberculosis and the difficulties in diagnosis and treatment. Tuberculosis should be systematically considered and investigated in case of hypercalcemia of unknown cause in children even though its rarity. It is, therefore, important to monitor serum calcium and vitamin D levels periodically in patients with tuberculosis. Additionally, bisphosphonates might be more appropriate treatment options for severe hypercalcemia due to granulomatous disease for two reasons: security for untreated patients before the definitive diagnosis and effective control of calcium levels. However, to draw more meaningful and significant conclusions for the use and efficacy of pamidronate in hypercalcemia related to tuberculosis, research with larger and more data should be conducted. The lack of evidence-based treatment guidelines for such patients may open the way for future studies.

Informed Consent: Written informed consent was obtained from the patient's family for this study and images.

Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: The authors declared that this study has received no financial support.

Authorship Contributions: Concept – SK; Design – SK, OY; Supervision – SK; Fundings – SE; Materials – OB, ME, SE, DD, OY; Data collection and/or processing – SK, OB, ME, SE, DD, OY; Analysis and/or interpretation – SK, OB; Literature review – SK; Writing – SK; Critical review – SK, ME, OY.

REFERENCES

8. Saggese G, Bertelloni S, Baroncelli GI, Di Nero G. Ketoconazole decreases the serum ionized calcium and 1,25-dihydroxyvitamin


