ABSTRACT

Objective: This case control study examined the frequency and distribution of the C677T and A1298C single-nucleotide polymorphisms of the methylenetetrahydrofolate reductase (MTHFR) gene in Turkish patients with chronic periodontitis.

Materials and Methods: This study included 89 subjects: 49 patients with chronic periodontitis and 40 healthy persons. Medical and periodontal histories were taken, and PD, CAL, PI, and BOP were recorded as the clinical parameters. The blood samples were taken from the subjects, and their DNA was obtained. The MTHFR gene’s single-nucleotide polymorphisms 677C→T and 1298A→C genotyping were analyzed using the RFLP assay, then PCR.

Results: There was a significant difference between the groups except for age when the clinical findings. Single-nucleotide polymorphisms in the MTHFR gene C677T and 1298C regions were not found to be significantly different between the groups.

Conclusion: The study revealed no association between the MTHFR polymorphism and the risk of chronic periodontitis; however, increasing the number of patients is useful when performing further studies. This present study is important because it is, to the best of our knowledge, the first study to research the interrelation between the MTHFR gene and chronic periodontitis.

Keywords: Methylenetetrahydrofolate reductase (MTHFR), polymorphisms, periodontitis

INTRODUCTION

Periodontitis is a multifactorial disease that starts with microbial dental plaque accumulating in the gingival region. In periodontal tissues, inflammation caused by pathogenic bacteria leads to the destruction of periodontal supportive tissues. Periodontal destruction is considered to occur as a result of the reaction between the bacterial challenge and the host response (1). The host response is affected by environmental and genetic factors. During the disease activity, cytokines are mediated by accelerating the periodontal destruction. Studies on the DNA methylation of different cytokine genes explaining the activity of periodontal disease will supply important data on the pathogenesis of periodontal disease (1, 2).

DNA methylation is an epigenetic mechanism that regulates the transcription of many genes (3). Studies have shown that the methylene tetrahydrofolate reductase (MTHFR) enzyme on this metabolic pathway showed that it plays a key role. As a consequence of a reduced MTHFR activity, homocysteine is accumulated, methionine remethylation cannot be achieved, and ultimately DNA methylation is missing. DNA hypomethylation in DNA’s making and repair disorder (4, 5). In the MTHFR deficiency, a disorder in the formation of methionine from homocysteine occurs and exposes the organism to both the reduction of methionine (and S-adenosylmethionine) and the toxic effects of homocysteine deposition (6).

The MTHFR gene takes part in the 1p36.3 chromosome and the C677T and A1298C single nucleotide polymorphisms identified in this gene. A low enzyme activity has been reported to be associated with these polymorphisms. As a consequence of the reduction in the MTHFR activity, the 5-methyl THF level decreases, and the plasma homocysteine (Hcy) level increases with the levels of 5,10-methylene THF (1, 3–7). Some of the MTHFR gene mutations cause deficiency of the its enzyme, and deficiency is very common in the general population. In MTHFR deficiency, especially the occurrence of arterial diseases has been suggested to be a risk factor (8), and clinical symptoms have been widely distributed, such as peripheral neuropathy, growth retardation, hypotonia, stroke, and thrombosis (8–11).

In severe MTHFR deficiency, hyperhomocysteinemia and homocysteinuria occur (12). Hyperhomocysteinemia is a risk factor for coronary heart, peripheral, vascular, and cerebrovascular disease (10–14). Recent studies reported an increased plasma Hcy levels in patients with chronic periodontitis (15). The aim of this study was to investigate the effects of the MTHFR gene C677T and A1298C gene polymorphisms on chronic periodontitis predisposition and disease prognosis.
MATERIALS and METHODS

Subjects and Sample Collection
The study was approved by the Ethics Committee of Atatürk University, and it was held on February 18, 2009, with the file number 2009.1.1/8. MTHFR gene polymorphisms were examined among chronic periodontitis patients and periodontally healthy individuals. A total of 49 patients and 40 healthy controls participated in the study.

The subjects were diagnosed with chronic periodontitis that included patients aged >35 years, a periodontal attachment loss greater than 5mm at teeth, with the probing depth greater than 6 mm, and there were lesions in each quadrant affecting more than two teeth. In the 6 months prior to the study, those who used any medications such as antibiotics, anti-inflammatory agents, and immunosuppressants and who suffered from systemic diseases were not included in the study. Written consent was obtained from all patients. Upon a periodontal examination, plaque index (PI), bleeding on probing (BOP) clinical attachment loss (CAL), and probing depth (PD) values of the subjects in both groups were recorded. For DNA isolation, peripheral blood samples were taken from the brachial artery of each patient.

DNA Isolation and Polymerase Chain Reaction
For genomic DNA isolation, 3 ml of blood was obtained from the subjects. Total genomic DNA was extracted using a Vivantis GF-1 Blood DNA Extraction User Guid (Vivantis Tech.) according to the manufacturer instructions. In vitro amplification DNA fragments used the PCR technique. The amplification of fragment 198 bp of MTHFR 677 was used for the sequence for 5’-CATCCCTATTGGCAGGTTAC-3’ and reverse 5’-GACGGTGCGGTGAGAGTG-3’ primers. At the amplification of fragment, 163 bp of MTHFR 1298 was used sequence for 5’-CTTTGGGGAGCTGAAGGACTACTAC-3’ and reverse 5’-CAGGTGCTGAGGTTAC-3’ primers as well. To obtain the PCR products, a reaction mix was prepared according to the instructions in a 0.5 ml tube. For the PCR mix, of a total volume of 25 µL that included 200 ng/ml DNA, 6 µl PCR Master Mix (Promega), and 0.5 µl 10 pmol of both primers was prepared. The PCR cycling was set to 30 cycles in 5 minutes at 94°C, then for 1 minute at 94°C, then for 1 minute at 57°C, and 15 seconds at 72°C, and then finally for a 10-minute extension at 72°C. The amplified product was examined in 3% agarose gel with electrophoresis under a UV transilluminator (Fig. 1).

Agarose Gel Electrophoresis
DNA fragments ranging from 100 to 50000 nucleotides were effectively separated by the agarose matrix. By altering the agarose concentration, DNA fragments can be separated in different sizes. We also used ethidium as a fluorescent dye. Bromide was for staining DNA fragments. The agarose gel electrophoresis technique can detect even fragments smaller than 5ng of DNA.

Restriction Fragment Length Polymorphism (RFLP)
For the digestion of the amplified PCR products, the restriction enzyme Hinf I for the region 677 and Mbo II for the 1298 region were used. For the Hinf I and Mbo II restriction digestions, mixtures of 2 µl buffer, 1.5 µl (10 U) of Hinf I, 4 µl water, and 4 µl of PCR product were prepared, and then they were incubated at 37°C overnight.

Statistical Analysis
The normality of dependent variables P–P plot and Kol-
mogrov–Smirnov test were tested. The gene polymorphisms were assessed with the count of direct gene. The difference between groups, the mean age, and clinical periodontal parameters that are not normally distributed were evaluated using the Mann–Whitney U test. The combined frequencies and the difference between the groups were analyzed using a two-proportional t test. The influence of the chronic periodontitis risk was calculated using the odds ratio and 95% confidence intervals. A p-value <0.05 was considered to be statistically significant.

RESULTS

In the analysis performed using clinical parameters, there was a significant difference between the plaque index (PI), bleeding on probing (BOP), clinical attachment loss (CAL), and probing depth (PD) parameters in the patient group compared to the control group (Table 1). No significant difference was found between the groups in the age parameter.

Genotyping

The genotype and allele frequencies of the MTHFR C677T and A1298C polymorphisms are shown in Table 2.

The genotyping distribution of the C677T and A1298C mutations was found to be chronic were periodontitis groups wild type at 69.4%, 677CT (heterozygous) at 24.5%, and 677TT (homozygous) at 6.1%, and for the control groups, they were 677CC at 70%, 677CT at 17.5%, and 677TT at 12.5%.

Table 1. Demographic and clinical Features of the studied subjects

<table>
<thead>
<tr>
<th></th>
<th>Controls (n=40)</th>
<th>Patients (n=49)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age Mean (SD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PD (SD) mm</td>
<td>1.8 (0.4)</td>
<td>3.5 (0.65)</td>
<td><0.001</td>
</tr>
<tr>
<td>CAL (SD) mm</td>
<td>0.7 (0.93)</td>
<td>3.4 (0.79)</td>
<td><0.001</td>
</tr>
<tr>
<td>BOP (SD)</td>
<td>0.6 (0.49)</td>
<td>1.7 (0.50)</td>
<td><0.001</td>
</tr>
<tr>
<td>PI (SD)</td>
<td>1.01 (0.62)</td>
<td>2.1 (0.61)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

SD: Standard deviation; PD: Probing depth; CAL: Clinical attachment loss; BOP: Bleeding on probing; PI: Dental plaque on probing

Table 2. Distribution of the MTHFR C677T and MTHFR A1298C allele and genotype frequencies in chronic periodontitis patients and controls

<table>
<thead>
<tr>
<th>Gene position</th>
<th>Alleles/Genotypes</th>
<th>Patients (n=49)</th>
<th>Controls (n=40)</th>
<th>p</th>
<th>Odds ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTHFR 677</td>
<td>CC</td>
<td>34 (69.4)</td>
<td>28 (70)</td>
<td>0.368</td>
<td>1.51 (0.61 to 3.76)</td>
</tr>
<tr>
<td></td>
<td>CT</td>
<td>12 (24.5)</td>
<td>10 (17.5)</td>
<td>0.432</td>
<td>1.48 (0.56 to 3.89)</td>
</tr>
<tr>
<td></td>
<td>TT</td>
<td>3 (6.1)</td>
<td>2 (12.5)</td>
<td>0.523</td>
<td>1.81 (0.29 to 11.4)</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>46 (82)</td>
<td>38 (83)</td>
<td>0.852</td>
<td>0.93 (0.45 to 1.94)</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>15 (18)</td>
<td>12 (17)</td>
<td>0.852</td>
<td>1.07 (0.52 to 2.22)</td>
</tr>
<tr>
<td>MTHFR 1298</td>
<td>AA</td>
<td>18 (36.7)</td>
<td>14 (35)</td>
<td>0.578</td>
<td>1.29 (0.53 to 3.12)</td>
</tr>
<tr>
<td></td>
<td>AC</td>
<td>27 (55.1)</td>
<td>21 (52.5)</td>
<td>0.502</td>
<td>1.49 (0.64 to 3.44)</td>
</tr>
<tr>
<td></td>
<td>CC</td>
<td>4 (8.2)</td>
<td>5 (12.5)</td>
<td>0.771</td>
<td>0.62 (0.16 to 2.49)</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>45 (64)</td>
<td>35 (61)</td>
<td>0.912</td>
<td>0.97 (0.55 to 1.71)</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>31 (36)</td>
<td>26 (39)</td>
<td>0.912</td>
<td>0.97 (0.55 to 1.71)</td>
</tr>
</tbody>
</table>

CI: Confidence interval
The genotype distribution of the A1298C polymorphism found in chronic periodontitis groups was 1298AA at 36.7%, 1298AC at 55.1%, 1298CC at 8.2%, and in the control group, it was 1298AA at 36.7%, 1298AC at 55.1%, and 1298CC at 8.2%. In the control group, it was found to be 1298AA at 35%, 1298AC at 52.5%, and 1298CC at 12.5%. A significant difference in the genotype and prevalence were not found between patients and controls.

Both groups’ MTHFR C677T and A1298C polymorphisms frequencies of allelic variants are presented in Table 3. In the combined frequencies, the difference between groups was not found between patients and controls.

DISCUSSION

Periodontitis is a chronic inflammation characterized by the bone loss in dental supportive tissues. Although oral bacterial infection is the main factor of periodontitis, genetic and environmental factors are known to play a role in its progression and severity. Various studies have been conducted to identify genetic factors and the genes affecting periodontal diseases (16). Polymorphisms of genes involved in pathways important for cell metabolism take place in critical positions. In this case, the protein function and enzyme activity that the gene encodes can be significantly influenced by these changes. The deterioration of the function of proteins critical for the cell metabolism leads to various diseases or it increases the risk for some diseases. MTHFR is one of the polymorphic genes that can be given as an example.

The MTHFR polymorphisms are important risk factors for the development of cancer, vascular diseases, and diabetes (17–19). A single gene polymorphism in the MTHFR gene is known to reduce the enzyme activity encoded from the gene. In the studies, a decrease in the MTHFR enzyme was found to be 35% in the presence of heterozygous genotype (677 CT) and 70% in the presence of homozygous genotype (677 TT) compared to the normal genotype 677CC (20). The homozygosis in the A1298C polymorphism is more effective than the heterozygosis polymorphism in causing a reduction in the enzyme activity (7).

In the literature, different results of the MTHFR polymorphism have been reported in different populations and in different disease groups (21–23). In our study, it was found to be 12.5% of TT homozygotes of HC with chronic periodontitis patient in Turkish population. The ethnic and geographic variation of the C677T polymorphism is quite high. The TT rate is 1% in black population.

With the MTHFR gene in the C677T polymorphism, the MTHFR enzyme activity decreased significantly, and homocysteine levels increased compared to 677CC genotypes in the 677CT or 677TT genotypes. It has been described as a risk factor in diseases such as cardiovascular diseases, neural tube defects, stroke, Down syndrome, breast and endometrial cancer, and diabetic nephropathy (8–11, 20–23). In our study, the 677CT ratios were found to be higher in the chronic periodontitis group compared to 677CC genotypes. This suggests that the MTHFR 677CT genotype may be considered to be a risk factor for chronic periodontitis. However, new studies are needed to be conducted on bigger populations.

Table 3. Frequencies of combined MTHFR C677T and MTHFR A1298C allelic variants in the chronic periodontitis patient and control groups

<table>
<thead>
<tr>
<th>MTHFR</th>
<th>Patients (n=49)</th>
<th>Controls (n=40)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>MTHFR 677++</td>
<td>12</td>
<td>24.5</td>
</tr>
<tr>
<td>MTHFR 677+-</td>
<td>18</td>
<td>36.7</td>
</tr>
<tr>
<td>MTHFR 677--</td>
<td>2</td>
<td>4.1</td>
</tr>
<tr>
<td>MTHFR 1298++</td>
<td>2</td>
<td>4.1</td>
</tr>
<tr>
<td>MTHFR 1298+-</td>
<td>18</td>
<td>36.7</td>
</tr>
<tr>
<td>MTHFR 1298--</td>
<td>2</td>
<td>4.1</td>
</tr>
</tbody>
</table>

MTHFR: Methylene tetrahydrofolate reductase
there is a significant increase in neural tube defects in individuals with the MTHFR 677T/1298C heterozygote status (27). In this study, double heterozygosity was higher in the chronic periodontitis group, and it was thought that it could be a risk factor for chronic periodontitis. The present study investigated the MTHFR gene poly-

In conclusion, this study was the first to describe the relationship between the MTHFR gene C677T and A1298C polymorphisms and CP. This hypothesis could indicate a different genetic background between CP and MTHFR. The effects of the MTHFR gene polymorphism on periodontitis should be examined in further studies.

Ethics Committee Approval: The study was approved by the Ethics Committee of Ataturk University, and it was held on February 18, 2009, with the file number 2009.1.1/8.

Informed Consent: Written informed consent was obtained from patients who participated in this study.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept – GK, RO; Design – GK, RO; Supervision – RO; Data Collection and/or Processing – GK; Analysis and/or Interpretation – GK, RO; Literature Search – GK; Writing – GK; Critical Reviews – RO.

Conflict of Interest: The authors have no conflict of interest to declare.

Financial Disclosure: This study was supported by the Scientific Research Projects Coordinator of Ataturk University with the BAP project number 2009/325, and it was produced from a PhD thesis.

REFERENCES

12. Hannibal L, Blom HJ. Homocysteine and disease: Causal associations or epiphenomenons? Mol Aspects Med 2017; 53: 36–42. [CrossRef]

dodontol 2011; 82(3): 439–44. [CrossRef]

17. Tantry JA, Reddy KP, Yerra SK, Jamil K. A Study of C677T Poly-
morphisms of Methylene tetrahydrofolate Reductase (MTHFR) Gene and its Susceptibility in Coronary Artery Disease. Asian Journal of Bi-

19. Özdağ AC, Cetin A, Bayoğlu B, Balci H, Cengiz M. Association between MTHFR C677T polymorphism and folate, vitamin B12, ho-

20. Keser N, Pazaraşka A, Özpak L. Maternal polymorphisms of MTH-

22. Wang X, Fu J, Li Q, Zeng D. Geographical and Ethnic Distributions of the MTHFR C677T, A1298C and MTRR A66G Gene Polymor-

25. Sharp L, Little J. Polymorphisms in genes involved in folate metabo-

26. Sharp L, Little J. Polymorphisms in genes involved in folate metabo-

27. Sharp L, Little J. Polymorphisms in genes involved in folate metabo-