Conclusion

Our case report shows a successful treatment of a post Fontan persistent thoracic drainage by the help of high dose octreotide. Although the reason of persistent pleural drainage was not chyle, high dose octreotide diminished the amount of pleural effusion. Further investigations are needed to understand the effect of octreotide in both chyllothorax and post Fontan persistent thoracic drainage.

References

administered after insertion of the multipurpose catheter for the second time into the proximal end of the shunt. Transcatheter lysis with streptokinase 1500 U/kg was continued for 15 minutes. The final angiogram showed the thrombus to have disappeared and the shunt was completely patent (Fig. 6). Immediately after intervention, oxygen saturation rose from 35% to 85% in room air. There were no signs or symptoms of respiratory failure in intensive care monitoring after angioplasty procedure. Blood sample was taken for the evaluation of thrombosis etiology.

Subcutaneous nadroparin calcium and oral coumadine treatments were started after balloon angioplasty. Nadroparin calcium was discontinued on the 3rd day, and thereafter coumadine together with aspirin were administered. Protein C level was 47% (70-130%), protein S was 61% (60-140%), and antithrombin III level was 62% (80-120%). Factor V Leiden (FV G1691A), prothrombin (PTH G20210A), and MTHFR (C677T) mutations were not detected. Protein C and antithrombin III levels of parents were within normal limits. Protein C, S and antithrombin III levels were re-evaluated three months later, and all were within normal limits.

Discussion

Occlusion or stenosis of a modified Blalock-Taussig shunt is not infrequent and have been reported in a variety of clinical settings (1). The incidence of thrombotic occlusion of Blalock-Taussig shunts ranges from 1 to 17% (8, 9). The stenotic shunts were characterized by formation of neointima, macrophage accumulation, multiple small areas of calcification, and thrombi of varying ages (8). Shunt failure presents in two different clinical settings. Those occurring over a period of time...
result in gradual worsening of cyanosis, polycythemia, effort intolerance and progress to total occlusion. The other presentation is an acute shunt occlusion in patients with shunt-dependent pulmonary blood flow, which can result in sudden onset life-threatening hypoxia, acute respiratory distress, acidosis, hypotension and even death. The clinical diagnosis of acute shunt obstruction with sudden onset cyanosis and absent shunt murmur should prompt immediate action. In suspected patients, echocardiography is a noninvasive reliable diagnostic tool. A second shunt may be required if the pulmonary artery size, weight or age of the patient are suboptimal for the definitive surgery.

Balloon angioplasty with or without thrombolytic therapy for acute occluded modified Blalock-Taussig shunt is an alternative to a second shunt procedure (1, 5). Wang et al. (6) performed balloon angioplasty for obstructed systemic-to-pulmonary artery shunt in 48 patients from 1994 to 1999. Thirty-two of these patients had modified Blalock-Taussig shunt and these shunts were successfully opened with balloon angioplasty (6). In our patient, Blalock-Taussig shunt was opened with balloon angioplasty but thrombolytic therapy was required due to an irregular contour on the pulmonary side of the shunt that was convenient to the thrombus.

Figure 5. Control anteroposterior angiogram shows completely patent but irregular contour seen in pulmonary site of the right-sided modified Blalock-Taussig shunt (white arrow)

Thrombolysis with various fibrinolytic agents has been described in cases with occluded shunts, as an alternative or adjuvant therapy to balloon angioplasty. Stent implantation is another alternative procedure to balloon angioplasty or thrombolysis in selected patients who have contraindications to thrombolytic therapy, such as recent surgery or neurological injury (7). Thrombolytic agents such as tissue plasminogen activator, urokinase, and streptokinase have been used in a systemic way or local route (3, 4). Localized catheter-directed application is generally preferred because of its lesser dose, lesser side effects, and more effectiveness than systemic application. Various streptokinase dosages have been recommended for clinical use, but there is no standard intraarterial dose in the literature (3). Streptokinase has been used in a dose of 70 U/kg or 5000U/hr for intraarterial thrombosis (9, 10). The usual recommended dose is 3000-4000U/kg bolus injection together with 1000-1500 U/kg/hour low-dose infusion thereafter. We infused intraarterial streptokinase immediately after balloon angioplasty due to the irregular contour seen in angiograms on the pulmonary side of the modified Blalock-Taussig shunt. Although we had planned to give 24 000 U streptokinase in 30 minutes, we discontinued the infusion after observing complete patency in angiograms after the half dose of streptokinase (12 000 U). Therefore, we stopped streptokinase on 15th minute of infusion. Sivakumar et al. (10) performed balloon angioplasty on 5 patients with acute (10) shunt thrombosis. One of these patients was successfully treated with local intraarterial streptokinase infusion as a 1000U/kg/hour dose and another patient required balloon angioplasty after streptokinase infusion at a dose of 1000 units/kg/hour for 6 hours, because its infusion was discontinued as hypotension and acidosis worsened and oxygen saturation dropped to 35% (10).

In conclusion, we presented an 11 months old patient with acute modified Blalock-Taussig shunt occlusion, who was successfully treated with balloon angioplasty and intraarterial streptokinase. When a second shunt is under consideration in a patient with obstructed shunt; performing balloon angioplasty with or without intraarterial streptokinase is a feasible, effective, and safe alternative procedure.

References