Coronary artery fistulas and coil embolization

Koroner arter fistülleri ve spiral ile embolizasyonu

Bagrat Alekyan, Carina Cardenas, Mehmet Reşat Ayalp

Department of Interventional Cardiology and Angiology, Bakoulev Scientific Center of Cardiovascular Surgery, Russian Academy of Medical Sciences, Moscow, Russia

Introduction

Congenital coronary artery fistulas, which have been known since 1865, appear among congenital heart diseases as frequently as 0.08-0.4% (1-5). McNamara and Gross have stated that fistulas stem from right main coronary artery (5-9), from left main coronary artery (32), left coronary artery (2), and from a single coronary artery (7). These fistulas drain away via right ventricle (52), right atrium (24), left atrium or pulmonary vein and left ventricle (2). In this study, we present a rare case of fistula, arising from the left main artery and draining away into pulmonary artery, which was effectively closed with spiral.

Case Report

A 12-year-old male patient, 6 years ago while being followed up with a diagnosis of prenatal encephalopathy, had been diagnosed as having continuous systolic murmur with a magnitude of 2/6 noticed in the 3-4 intercostal spaces on the edge of left sternum. The patient underwent detailed examination at cardiology clinic and the diagnoses of mitral valve prolapsus and coronary artery fistula were established. The patient was referred to our hospital with complaints of weakness, getting tired quickly, asthma and chest pain for the last six months. At the time of referral to the hospital his height was 1.55 meters and weight - 37 kg. His family history was remarkable because his sister suffered from atrial septal defect. The first examinations conducted in our clinic indicated that the pulse of the patient was 80/min rhythmic, blood pressure was 105/70 mmHg, and continuous blowing murmur with a magnitude of 2/7 was found in the left 3-4 intercostal space. The patients underwent detailed examination at cardiology clinic and the diagnoses of mitral valve prolapsus and coronary artery fistula were established. The patient was referred to our hospital with complaints of weakness, getting tired quickly, asthma and chest pain for the last six months. At the time of referral to the hospital his height was 1.55 meters and weight - 37 kg. His family history was remarkable because his sister suffered from atrial septal defect. The first examinations conducted in our clinic indicated that the pulse of the patient was 80/min rhythmic, blood pressure was 105/70 mmHg, and continuous blowing murmur with a magnitude of 2/7 was found in the left 3-4 intercostal space. The examinations conducted in our clinic indicated that the pulse of the patient was 80/min rhythmic, blood pressure was 105/70 mmHg, and continuous blowing murmur with a magnitude of 2/7 was found in the left 3-4 intercostal space.

Electrocardiography (ECG) showed the existence of incomplete right bundle branch block, biphasic T waves in V 2-3, 1+ Mitral valve deficiency (1+) and minimal left ventricular dilatation with ejection fraction of 59% were found on echocardiography. His hemogram and blood chemistry were found to be normal. Heart catheterisation and coronary angiography revealed fistula between the left main coronary artery and pulmonary artery and also between the right coronary artery and the pulmonary artery (Fig. 1,2). His pulmonary artery pressure was 19 mmHg and oxygen saturation was measured as - 94%. Taking into consideration the fact that both coronary artery fistulas were very thin and it was anatomically difficult to close them, it was decided to perform coil embolization. A 5 F introducer, 5 F JL, JR catheters and a guiding wire with a diameter of 0.35 mm were used for catheterisation and coronary angiographies. A 5F Judkins left catheter, a guiding wire with a diameter of 0.35 mm, and 2 pieces of 5X5 Gianturco coils (William Cook Europa, Bjæveroskov, Denmark) were used for the process of embolization. Right before the procedure, the patient was given 100 U/kg heparin. Since the fact that fistula origin from the left main coronary increases the risk of blocking the main coronary during embolization, the fistula was left in more distal part. However, when the control angiographies conducted just afterwards and after 20 minutes showed that the fistula was hardly ever closed and it was still filling pulmonary artery, we have decided to leave the second coil in proximal part (Fig. 3). Within twenty minutes after the placement of the second coil, 4 control angiographies were performed. When we observed that fistula was completely closed we finished the procedure (Fig. 4-5).

Discussion

Coronary fistula appears as frequently as one in five hundredth during coronary angiography and always shows hemodynamic signs (3,6). Some researchers argue that the diagnosis of fistula is a surgical indication regardless of the existence of symptom (8,9). Early closure is mandatory to prevent such complications as refractory congestive heart failure, which generally appears in the 2nd and 3rd decades of life, myocardial ischemia or endocarditis. Fistula embolization with coil is a serious alternative to surgical treatment. However, it is a very complicated and difficult procedure. Because of the rarity of the defect, the literature reports are few. Petrosyan JS conducted the very first successful fistula embolization in the world in our centre in 1982 (7). If there are such anatomic characteristics such as large, aneurysmatically dilated coronary ostium, dilated coronary artery, restrictive stenosis of fis-
tula, distal localization of the drainage orifice and absence of concomitant organic heart pathology, embolization may be an appropriate technique. In the absence of stenosis, proximal or lateral localization of the drainage orifice, presence of several drainage orifices, a large aneurysm of an anomalous coronary artery, especially localized distally, single coronary artery and concomitant organic heart disease exist, embolization may be difficult and the risk of complication is high. In such circumstances, if possible benefits and risks should be weighed; the choice of routine surgical treatment would be less risky. Of course, surgeon’s experience plays an important role in this choice. Coil embolization of the fistula ought to be made dis-

Figure 1. Fistula between the left main coronary artery and the pulmonary artery

Figure 2. Fistula between the right coronary artery and the pulmonary artery

Figure 3. Control angiography after 20 minutes shows residual flow (after implantation of first coil)

Figure 4. After implantation of two coils
tally and be conducted far from drainage orifice so as to pre-
vent both the closure of normal coronary arteries and the mig-
ration of coil into the other orifices. This generally makes it dif-
ficult to determine the definite specification of the location for
sufficient occlusion. The size of the coil to be implanted ought
to be at least 30% greater than the diameter of the calculated
fistula to prevent reposition and migration of it. It is difficult
that guidewire and catheter go distally through thin-walled
coronary artery turnings and get permanently fixed in the lo-
cation where occlusion is considered. There are risks of coro-
nary artery perforation and embolization of normal coronary
artery. Also there is a potential coronary complication due to
catheter manipulation in coronary arteries. The frequent mo-
itoring of ECG is necessary, because during the procedure
temporary myocardial ischemia may be specified. If this is-
chemia is long-term, to give nitrate or β blocker in appropriate
doses is a better choice instead of withdrawing the catheter
or the guidewire. Insufficient embolization, femoral thrombo-
sis, the migration of the coil into pulmonary system are other
potential complications. Before the procedure, materials must
be ready in case of coil migrates into pulmonary system. Al-
though it is possible to remove the coils that migrate into pul-
monary system with “snare”, this may not always be possible.

Gianturco coils, platinum micro coils, independent silicon, la-
tex balloons or a combination of coils and balloons can be
used as coronary fistula embolization materials (10-12). Of the-
se, Gianturco coil, which was employed in this case, is used
most often. Up to 20 spirals have been used in our embolizati-
ons so far (13). However, 1-2 spirals may mostly be sufficient
depending upon the size of fistula. In this case an effective re-
sult achieved with 2 coils.

When we, as an experienced center in this field, consider
our short and long-term results, we can say that occlusion is
an effective alternative to routine surgery (14). It offers an ad-
ditional advantage over surgery in terms of low cost.

References

 1987.
2. McNamara JJ, Gross RE. Congenital coronary artery fistula. Sur-
3. Baltaxe HA, Wixson D. The incidence of congenital anomalies of
 the coronary arteries in the adult population. Radiology
4. Reidy JF, Anjos RT, Qureshi S. Transcatheter embolization in the
 treatment of coronary artery fistulas. J Am Coll Cardiol
tulas in Turkish patients undergoing diagnostic cardiac angiog-
6. Wilde P, Watt I. Congenital coronary artery fistulae: six new ca-
7. Alekyan BG, Petroisyu JuŠ. Transcatheter coil embolization of cor-
8. Issenberg HJ. Transcatheter coil closure of a congenital coro-
 in the treatment of coronary artery fistulas. J Am Coll Cardiol
10. Alekyan BG. Endovascular surgery in the treatment of some con-
 versus steal: coil embolization of congenital coronary ar-
12. Reidy JF, Tynan MJ, Qureshi S. Embolization of a complex coro-
nary arteriovenous fistula in a 6-years-old child: the need for
13. Alekyan BG, Podzolkov VP, Cardenas CE, Mitina IN. Transcath-
heter coil embolization of the coronary fistulae. 9th Complex
p. 767-77.
14. Alekyan BG, Podzolkov VP, Cardenas CE. Transcatheter coil em-
bolization of coronary artery fistula. Asian Cardiovasc Thorac

Figure 5. Angiography view after embolization of fistulas with 2
coils (successful closure)