because of the lack of our baseline T_2^* values, due to based on our study sub-analysis may not be appropriate to say that the more efficient use of deferasirox therapy.

In the literature, there are studies that have found more effective iron chelators that are available for use in TM patients. In a research conducted by Pathere et al. (2), a significant increase of T_2^* values in deferasirox users was reported in a 18-month follow-up for 19 patients with cardiac iron loading and T_2^* values of 6–20 ms. Similarly, in the study by Pennell et al. (3), an increase in T_2^* values were detected with deferasirox in the 3-year follow-up of 71 patients with T_2^* values of 5–20 ms. In the CORDELIA study that compared the deferoxamine treatment with deferasirox, in deferasirox group, also not reach statistical significance, better results in myocardial iron removal was determined (4). Also, in the study conducted by Pepe et al. (5), the difference between the baseline and follow-up T_2^* values of 164 TM patients was investigated to study the effectiveness of the iron chelators that were used. According to this research, initially in patients with non-iron load combined treatment with deferasirox+deferoxamine were similar with the use of each drug as monotherapy in terms of the maintenance of normal T_2^* values. However, in this group of patients, deferasirox monotherapy was found to be superior to monotherapy with deferoxamine and combination therapy in the maintenance of normal left ventricular ejection function. Initially, in patients with iron overload, with respect to the elevation of T_2^* values, combination therapy has been reported to be similar with deferasirox treatment but superior to treatment with deferoxamine (5). Therefore, knowledge of baseline T_2^* values are important in the evaluation of drug efficacy. Currently, ongoing large-scale studies will guide our treatment selection.

Nermin Bayar, Erdal Kuroğlu, *Şakir Arslan, Selçuk Küçüküseyen Departments of Cardiology and *Hematology, Antalya Education and Research Hospital; Antalya-Turkey

References

Address for Correspondence: Dr. Nermin Bayar, Öğretmenevleri Mah. 19. Cadde, Fetih Konakları B/5 Konyaalti-Antalya-Türkiye E-mail: dr.nermin@mynet.com

Apical transverse motion is associated with speckle-tracking radial dyssynchrony in patients with non-ischemic dilated cardiomyopathy

To the Editor,

We have read with great interest the article in press entitled “Apical transverse motion is associated with speckle-tracking radial dyssynchrony in patients with non-ischemic dilated cardiomyopathy” by Gürel et al. (1), published in the latest issue of Anatol J Cardiol. The study demonstrated that the patient’s selection for cardiac resynchronization therapy and follow-up of echocardiographic parameters for those who received this therapy is a problem that concerns both echocardiographers and electrophysiologists.

The authors proposed an original comparison of two methods to assess the presence of ventricular dyssynchrony in patients with non-ischemic dilated cardiomyopathy. Mainly, the study population of patients with an ejection fraction below 40% and no evidence of ischemic disease was divided in two groups based on the presence or absence of radial dyssynchrony as assessed by speckle tracking. Speckle-tracking analysis, including global radial and circumferential strain and myocardial rotation, twist and torsion, apical transverse motion analysis, and noting the main direction and amplitude of the curves, were performed. At first glance, it may seem that the small number of patients (n=35) would make the analysis easy, but the authors had to assess a tremendous number of regional strain curves (n=1050). Statistical analysis revealed that even though the two groups were similar regarding clinical characteristics, three out of four parameters reflecting apical transverse motion (ATM loop, ATM4CV, and ATM3CV) were higher in patients with radial dyssynchrony, as well as end-systolic and end-diastolic diameters, while left ventricle torsion and twist were significantly lower for this group. This clearly showed a correlation of these parameters with radial dyssynchrony assessed by speckle-tracking. For distinguishing between patients with and without radial dyssynchrony, the authors found a cut-off value for ATM loop, with a high grade of sensitivity and specificity. It is our belief that such measurements would make the difference between the visual assessments of apical rocking, that is clearly subjective, and a method capable of a precise evaluation for radial dyssynchrony because it has been shown that apical motion is a surrogate parameter comprising information on both regional myocardial function and temporal inhomogeneities of myocardial contraction. In this perspective, a relation between ATM and the extent and location of myocardial scar tissue may be expected (2), making possible the evaluation of patients with ischemic dilated cardiomyopathy also. Although in the present study the follow-up of patients could not be performed, we think that along with other methods capable of detecting not only intraventricular dyssynchrony but also disturbed atioventricular coupling and interactions between the right and left ventricle (3), assessing ATM may be a useful tool in selecting candidates for CRT as well as in device optimization using echocardiographic methods.

Adriana Mitre1,2, Silvia Lupu1,2, Dan Dobreanu1,2
1University of Medicine and Pharmacy; Targu Mures-Romania
2Institutes for Cardiovascular Diseases and Heart Transplant; Targu Mures-Romania
References

Address for Correspondence: Adriana Mitre, MD, Institute for Cardiovascular Diseases and Heart Transplant 50 Gh. Marinescu, 540103, Targu Mures-Romania
Phone: 0040722622484
E-mail: adriana.mitre@umftgm.ro
Copyright 2015 by Turkish Society of Cardiology - Available online at www.anatolcardiol.com DOI:10.5152/akd.2015.6406

Author’s Reply

To the Editor,

We would like to thank the authors of the letter for their interest about our article in press entitled “Apical transverse motion is associated with speckle-tracking radial dyssynchrony in patients with non-ischemic dilated cardiomyopathy,” published in this issue of The Anatolian Journal of Cardiology (1). Apical transverse motion (ATM), to quantify apical rocking, has recently been proposed by Voigt et al. (2) as a new parameter for assessing left ventricular (LV) dyssynchrony. They demonstrated that ATM contained information on both regional and temporal function inhomogeneities of the LV and that it has a potential role in the clinical context.

In our study, we investigated the relation of the ATM with LV radial dyssynchrony assessed by speckle-tracking echocardiography, which is a reliable indicator of regional myocardial contraction (3, 4), in patients with non-ischemic dilated cardiomyopathy. Speckle-tracking analysis, myocardial rotation, twist, torsion, and ATM analysis were performed as previously described (2, 3, 5). After the analysis, ATM (ATM loop, ATM4CV, and ATM3CV) was found to be significantly correlated to the speckle-tracking derived radial dyssynchrony, and a 2.5 mm cut-off value for ATM loop could distinguish between patients with and without radial dyssynchrony, with high sensitivity and specificity. Patients with radial dyssynchrony also showed disturbed rotational dynamics and significantly decreased LV twist and torsion.

Despite a large number of publications in this field, we currently cannot advise one ideal parameter for the success of cardiac resynchronization therapy (CRT). Multiple interrelated mechanisms, including myocardial viability within the paced area, underlying myocardial conditions such as fibrosis and hypertrophy, and location of the pacing lead, may affect the response to CRT. However, echocardiography has an attractive role in guiding us for understanding how CRT actually works and how to select candidates for this specific therapy. Because up to 30% of patients undergoing CRT do not respond favourably with the currently accepted criteria for the patient selection (QRS duration, NYHA class, and ejection fraction), several echocardiographic methods have been identified so far to quantify LV dyssynchrony. We believe that the evaluation of ATM together with other echocardiographic methods may be practical and useful for the selection of CRT candidates.

Emre Gürel, Kürşat Tigen
Department of Cardiology, Pendik State Hospital; Istanbul-Turkey

Address for Correspondence: Dr. Emre Gürel, Atatürk Mahallesi, Öziem Sok. No: 7/10, 34482, Kartal, Istanbul-Türkiye
Phone: +90 533 423 21 51
Fax: +90 216 354 96 67
E-mail: emregurelctf@yahoo.com

Could the data of home blood pressure monitoring be used to evaluate the risk of subclinical target organ damage in hypertensive patients?

To the Editor,

We thank Her et al. (1) for their study published in the December 2014 issue of Anatol J Cardiol. This research gave us the idea on how to use the data from home blood pressure monitoring (HBPM) for predicting subclinical target organ damage (TOD) in patients with hypertension treated in primary care. In our opinion, the constructed regression models are potentially appropriate for creating a relatively simple risk prediction model for subclinical TOD. Such a risk calculator is favorable for long-term follow-up facilitated by HBPM in patients with uncomplicated hypertension. A recently conducted study by Kiselev et al. (2)