

5. Parvez B, Pathak V, Schubert CM, Wood M. Comparison of lesion sizes produced by cryoablation and open irrigation radiofrequency ablation catheters: J Cardiovasc Electrophysiol 2008; 19: 528-34. [CrossRef]


Address for Correspondence: Dr. Volkan Tuzcu, İstanbul Medipol Üniversitesi Hastanesi, Pediyatrik Kardiyoloji Bölümü, Pediyatrik ve Genetik Aritmi Merkezi, İstanbul-Türkiye
Phone: +90 212 460 77 82
Fax: +90 212 471 94 94
E-mail: vtuzcu@gmail.com
Available Online Date: 25.06.2014
©Copyright 2014 by Turkish Society of Cardiology - Available online at www.anakarder.com
DOI:10.5152/akd.2014.5291

Near zero fluoroscopy radiation exposure during successful catheter ablation of atrial tachycardia from the non-coronary aortic cusp using 3-dimentional electroanatomic mapping system

Ekrem Güler, Oğuz Karaca, Filiz Kızılırmak, Gamze Babür Güler, Fethi Kişiçaslan
Department of Cardiology, Faculty of Medicine, İstanbul Medipol University; İstanbul-Turkey

Introduction
Atrial tachycardia (AT) rarely originates from the paraHisian region (1). Catheter ablation of paraHisian AT carries a substantial risk of atrioventricular (AV) block. Cryoablation offers a safer ablation strategy for these patients (2). There is a small risk of AV block with cryoablation. Ablation of paraHisian AT from the non-coronary aortic cusp (NCC) is an option in these patients. We report a patient with paraHisian AT that was successfully ablated from the NCC by 3-Dimentional (3-D) mapping system with using near zero fluoroscopy (NZF).

Case Report
A 62-year-old woman, was referred to our institution due to symptomatic supraventricular tachycardia. She had undergone paraHisian AT ablation from right atrium at another center one year ago. She had recurrence of AT after 3 months. At the time of her admission, electrocardiogram (ECG) during tachycardia revealed AT. Echocardiogram showed mild mitral regurgitation and normal left ventricular function. An electro-physiological (EP) study was undertaken. Multi-electrode catheters were positioned into His bundle region and coronary sinus and an electroanatomic mapping system was used (EnSite NavX® system, St. Jude Medical, Inc., St. Paul, MN, USA). His region was tagged on the 3-D anatomy of the right atrium (RA). Supraventricular tachycardia was induced by programmed atrial stimulation. AT was diagnosed by using the EP maneuvers. The tachycardia was mapped by using the En-site system and the earliest activation was found at the His region. Cryoablation catheter was advanced to the His region. Then, cryoablation could not be performed due to transient AV block during cryomapping of the tachycardia at the point of earliest activation. There was AV block even during manipulation of the cryoablation catheter. Then, 3-D anatomy of the aorta and aortic cusps were constructed (Fig. 1). The earliest local activation was detected within the NCC. Here, local atrial activity preceded onset of the P wave by 53 msec (Fig. 2). Location of the radiofrequency (RF) catheter was confirmed using fluoroscopy and electro mapping system. A single application of RF energy (power: 30 Watts, maximum temperature 55 degree) completely terminated the tachycardia. Total fluoroscopy time was 1 min 38 seconds. The patient was asymptomatic, ECG and rhythm Holter recordings showed no recurrence of AT.

Discussion
Focal ATs may originate in the right atrium around crista terminalis, coronary sinus, paraHisian region, tricuspid annulus and right atrial appendage. In left atrium, they primarily originate from pulmonary veins, mitral annulus, left atrial appendage and left septum (3). ATs originating
from paraHisian region are rare (1). Origin of AT is an important factor for the success and the complication of ablation procedures.

Ablation near His region has potential risk of damage of AV nodal conduction system. For this reason, cryoablation is preferred over RF ablation. Cryoablation has the advantage of cryomapping and if there is no AV block during cryomapping then it is generally safe to freeze to lower temperatures until permanent ablation occurs. In our case, we have seen AV block during cryomapping period. The superior part of the interatrial septum has a close proximity to the NCC (4). Thus, ablation inside the NCC may terminate and cure ATs arising from this region. Actually, in certain patients, NCC offers the only available option for successful ablation.

Operator should be sure about the position of ablation catheter, because of the damage to aorta, aortic valve and coronary arteries during ablation in the NCC. Fluoroscopy and electro-anatomic mapping system may be used for this purpose. Also, 3-D mapping system facilitates ablation, reduces radiation exposure and fluoroscopic time (5, 6). This system allows reconstruction of geometry and provides a high resolution map of the region with earliest activation (7, 8). Also, if available intracardiac echocardiography may be helpful (9).

Ouyang et al. (10) performed RF ablation from NCC in 9 patients. Six of their patients had a history of failed ablation attempt. They reported that, all patients had successful ablation from the NCC. Our patient had RF ablation from the right atrium one year ago and had recurrence after 3 months.

Conclusion

We have described a successful catheter ablation procedure of focal AT originating from the NCC by using 3-D cardiac mapping system. Furthermore, very brief fluoroscopic use and low radiation exposure during the ablation procedure from the NCC is possible by using the electro-anatomic mapping system.

References


Address for Correspondence: Dr. Ekrem Güler, İstanbul Medipol Üniversitesi Tıp Fakültesi, Kardiyoloji Anabilim Dalı, İstanbul-Türkiye
Phone: +90 212 460 75 88
E-mail: ekgul@yahoo.com
Available Online Date: 25.06.2014
©Copyright 2014 by Turkish Society of Cardiology - Available online at www.anakader.com DOI:10.5152/akd.2014.5507