Epicardial adipose tissue measurement: inexpensive, easy accessible and rapid practical method

Dear Editor,

We have read the article “Epicardial adipose tissue (EAT) is independently associated with increased left ventricular mass in untreated hypertensive (UHT) patients: an observational study” written by Erdoğan et al. (1) with a great interest. The authors aimed to evaluate the relationship between EAT and left ventricular hypertrophy (LVH) in patients with UHT. They concluded that EAT was related to increased LVM independent of body mass index (BMI), waist circumference, weight, systolic and diastolic blood pressure and other risk parameters, in patients with UHT. Determination of increased EAT by echocardiography may have an additional value as an indicator of cardiovascular risk and total visceral adipose tissue. Thanks to the authors for their contribution of the present study, which is successfully designed and documented.

Cardiovascular diseases are the most important causes of mortality and morbidity in developed countries worldwide. It is widely recognized that accumulation of EAT is strongly related to the development of coronary artery disease (CAD). EAT amount may contribute to systemic inflammation beyond traditional cardiovascular risks and body fat composition. EAT measured by echocardiography has been known to be an indicator of cardiovascular risk factors. Current study (7).

We thank the authors for their supportive comments on our article published in the Anatolian Journal of Cardiology related to the relationship between epicardial adipose tissue (EAT) and left ventricular mass (1) in their letter entitled as ‘Epicardial adipose tissue measurement: inexpensive, easy accessible and rapid practical method’. They also pointed that EAT amount may contribute to systemic inflammation beyond traditional cardiovascular risks and body fat composition. Several factors including the duration of hypertension (HT), liver and kidney function tests as well as alcohol consumption, hypothyroidism, hypertension may have an additional value as an indicator of cardiovascular risk factors.
impaired glucose tolerance and higher inflammatory status such as an inflammatory disease, cardiac syndrome X and infection may affect EAT, therefore if provided they would be valuable. In addition, inter-observer and intra-observer variability for EAT measurement are asked, which had already been provided.

We accept that above-mentioned additional factors may have effects on EAT. We checked them and the existing data was provided herein. EAT was correlated to uric acid, glucose and C-reactive protein (CRP) but not creatinine, liver functions and duration of HT in our data. On the other hand, we had performed a multivariate analysis including these related parameters and we had determined that left ventricular mass (LVM) is independently related to uric acid and glucose as well as EAT, but not CRP.

In our opinion, the possible effects of increased epicardial adipose tissue on vasculature and heart an active local paracrine role and passive thermogenic effect or systemic endocrine effects are possible mechanisms for active participation of EAT in this process. We believe that further studies on LVM are needed to clarify more accurately the mechanisms and possible causative cells, cytokines and may be receptors and to confirm the importance of modulating real underlying mechanism to improve clinical outcome.

Sinan Altan Kocaman
Clinic of Cardiology, Rize Education and Research Hospital, Rize-Turkey

References


Address for Correspondence/Yazışma Adresi: Dr. Sinan Altan Kocaman
Rize Eğitim ve Araştırma Hastanesi, Kardiyoloji Kliniği, 53020 Rize-Türkiye
Phone: +90 464 213 04 91
E-mail: sinanalultan@gmail.com
Available Online Date/Çevrimiçi Yayın Tarihi: 10.09.2013

LDL cholesterol measurement in terms of CHOLINDEX

LDL kolesterol ölçümünün CHOLINDEX açısından değerlendirilmesi

Dear Editor,

I have read the manuscript of Akpınar et al. (1), which was published in the Anatolian Cardiology Journal on March 2013 entitled ‘A new index (CHOLINDEX) in detecting coronary artery risk’ with great enthusiasm and interest. Authors have validated a new index, which can be applicable to our daily practice, while taking care of our patients.

As we understand from the manuscript that serum level of LDL cholesterol was measured by enzymatic method utilizing an auto analyzer. However in our daily practice, we all know that when we order ‘Lipid profile’ for our patients, whether in a university or a government or a special hospital, lipid profile results mostly reported with an indirect formulated measurement, which is Friedewald formula. This formula was validated in 1972 and still inside the market. Besides this formula there are new formulas under investigation and still validating for our daily practice. These new automated LDL measurement formulas are competing with the former Friedewald formula (2, 3).

The gold standard method for LDL-cholesterol measurement is ultra-centrifugation followed by beta-quantitation, which is expensive and inconvenient for routine clinical application (4). More recently, direct methods of LDL cholesterol measurement using specifically designed detergents have been developed, which outperform those based on inhibition with monoclonal antibodies (5, 6). However, these methods are still quite expensive for most laboratories, and thus direct determination of LDL cholesterol is uncommon in most laboratories worldwide.

I suggest to authors that, if they want to validate this new index for our daily practice, they have to adjust their new index according to Friedewald as well as the newly described validated indirect LDL cholesterol measurement formulas. Otherwise because of time and financial shortage of most of the hospitals, this new Cholindex may not find its value for the scientific and cardiologic assessment of coronary artery disease.

As I conclude, after adjustment of the Cholindex to indirect LDL cholesterol measurements (Friedewald, de Cordova CM) we all can be happy with this new coronary artery disease index.

Rıfat Eralp Ulusoy
Clinic of Cardiology, Private Memorial Service Hospital, İstanbul-Turkey

References


Address for Correspondence/Yazışma Adresi: Dr. Rıfat Eralp Ulusoy
Özel Memorial Hizmet Hastanesi, Kardiyoloji Kliniği, Bahçelievler Mah., Güneş Sok., No:2-4 Yanyol Üzeri, Bahçelievler, İstanbul-Türkiye
Phone: +90 216 542 20 00
E-mail: eralpulusoy@hotmail.com
Available Online Date/Çevrimiçi Yayın Tarihi: 10.09.2013

©Copyright 2013 by AVES Yayıncılık Ltd. - Available online at www.anakarder.com
doi:10.5152/akd.2013.208