ones. In suspected cases of illicit drug abuse, beta-adrenergic blocking agents should be avoided. Patency of infarct-related artery can be achieved by PCI in patients with AMI associated with amphetamines or amphetamine-like substances.

Abdullah Uluçay, Canan Arpacık Kargı¹, Mehmet Furak Aksoy
Clinic of Cardiology, Defne Hospital, Hatay
¹Clinic of Cardiology, Iskenderun State Hospital, Hatay-Turkey

Video 1, 2, 3. Pre-stenting, post-stenting and final coronary angiographic video/movie images in different views.

References

1. Kraemer T, Maurer HH. Toxicokinetics of amphetamines: metabolism and toxicokinetic data of designer drugs, amphetamines, methamphetamine, and their N-alkyl derivatives. Ther Drug Monit 2002; 24: 277-89. [CrossRef]
5. Westover AN, Nakonezny PA, Haley RW. Acute myocardial infarction in young adults who abuse amphetamines. Drug Alcohol Depend 2008; 96: 49-56. [CrossRef]

Address for Correspondence/Yazışma Adresi: Dr. Abdullah Uluçay, Özel Defne Hastanesi, Kardiyojoli Bölümü, Hatay-Türkiye
Phone: +90 326 221 11 00 Fax: +90 326 221 44 45
E-mail: ulucaytr@hotmail.com
Available Online Date/Cevrimiçi Yayın Tarihi: 07.02.2012

A case of iatrogenic hypothyroidism presented with cardio-inhibitory syncope and resolved by thyroxine supplementation

Tiroksin tedavisi ile düzeıl kardiyoinhibitör senkop ile gelen iatrogenik hipotiroidili bir vaka

Introduction

Thyroid hormones have inotropic and chronotropic effects on heart function and enhance overall total protein synthesis in the heart (1). Adenosine-triphosphatase activity of myosin heavy chain α is markedly higher than myosin heavy chain β. T3 stimulates the expression of myosin heavy chain α but decreases the expression of myosin heavy chain β. This regulation may modulate myocardial contractility. Thyroid hormones increase cardiac actin and troponin I. Release of calcium and its reuptake into the sarcoplasmic reticulum are important for systolic and diastolic functions. The gene encoding calcium pump of the sarcoplasmic reticulum is markedly T3 responsive (2). Thyroid hormones can regulate β-adrenergic receptor number in the heart and may enhance sensitivity to catecholamines (1).

Case Report

A 15-year-old girl presented with syncope. She lost consciousness for approximately five minutes when she has been sitting, before her admission. No feces or urine incontinence or tonic contractions had been observed.

On physical examination she was conscious, her body weight was 42.5 kg (5-10 percentiles), height 158 cm (25-50 percentiles). The pulse rate was 52 beats/min, the blood pressure 85/40 mmHg. The auscultation of heart was normal except for bradycardia; neurological examination was normal. There was a transverse incision scar on the anteromedial neck; thyroid gland was nonpalpable. The blood testing showed macrocytic anemia (Hb: 9.6 gr/dl, Htc: 26.2%, MCV: 100.8 fl). Blood glucose, electrolytes telecardiogram and electroencephalogram were normal. Electrocardiography showed sinus bradycardia, low voltage, first degree atrioventricular block on electrocardiogram due to iatrogenic hypothyroidism.

We report a 15-year-old girl who presented with syncope and sinus bradycardia, low voltage, prolonged QT interval and first degree atrioventricular block on electrocardiogram due to iatrogenic hypothyroidism.

Discussion

Thyroid hormones have inotropic and chronotropic effects on heart function and enhance overall total protein synthesis in the heart (1). Adenosine-triphosphatase activity of myosin heavy chain α is markedly higher than myosin heavy chain β. T3 stimulates the expression of myosin heavy chain α but decreases the expression of myosin heavy chain β. This regulation may modulate myocardial contractility. Thyroid hormones increase cardiac actin and troponin I. Release of calcium and its reuptake into the sarcoplasmic reticulum are important for systolic and diastolic functions. The gene encoding calcium pump of the sarcoplasmic reticulum is markedly T3 responsive (2). Thyroid hormones can regulate β-adrenergic receptor number in the heart and may enhance sensitivity to catecholamines (1).
roid patients (1, 3, 4). Also 2:1 atrioventricular block was demonstrated in a patient with subclinical hypothyroidism (5). These electrocardiographic changes are resolved by thyroid hormone replacement (4, 5). In patients, low voltage may occur in electrocardiogram due to accumulation of fluid in the pericardium (6). Myocardial swelling, interstitial fibrosis and accumulation of mucopolysaccharides have been demonstrated on histological examination of hypothyroid heart (1, 7). These changes may lead to voltage suppression without pericardial effusion (8).

Ectopic thyroid is the presence of functioning thyroid tissue in aberrant location. It can be found anywhere between the foramen cecum and the normal pretracheal position. The ectopic thyroid is only source of functioning thyroid tissue in approximately 75% of such cases (9). Also in our patient, ectopic thyroid gland was the only thyroid hormone source.

Thyroid hormones play a role in normal hematopoiesis. Macrocytic or normocytic anemia may occur in hypothyroid status and anemia is resolved by thyroid hormone replacement (10).

Conclusion
Our patient was diagnosed as having iatrogenic hypothyroidism which was resulted from total excision of ectopic thyroid tissue. Because she had a short period of unconsciousness without feces or urine incontinence, tonic contractions or constitutional symptoms, electroencephalogram and head-up tilt testing was normal, neurological seizure and vasovagal syncope were excluded. Since all of her clinical and laboratory abnormalities including electrocardiographic findings improved with levothyroxine therapy, syncope was considered to be due to cardio-inhibitory effects of hypothyroidism. We would like to emphasize that careful evaluation of anteromedial neck masses for ectopic thyroid gland before excision is very important. On the other hand, thyroid hormone replacement and close follow-up of patient are essential after thyroidectomy.

Melike Sezgin Evim, Birsen Uçar¹, Züleybir Kılıç¹, Birgül Kirel²
Department of Hematology, Faculty of Medicine, Uludağ University, Bursa
¹Departments of Pediatric Cardiology and ²Pediatric Endocrinology, Faculty of Medicine, Eskişehir Osmangazi University, Eskişehir-Turkey

References
1. Yen PM. Physiological and molecular basis of thyroid hormone action. Physiol Rev 2001; 81: 1097-142.

Address for Correspondence/Yazışma Adresi: Dr. Melike Sezgin Evim, Uludağ Üniversitesi Tıp Fakültesi, Hemedatoloji Anabilim Dalı, Bursa-Türkiye Phone: +90 224 295 05 47 Fax: +90 224 442 81 43 Email: melikevim@yahoo.com
Available Online Date/Çevrimiçi Yayın Tarihi: 07.02.2012

Figure 1. Our patient’s electrocardiogram on admission showing sinus bradycardia, low voltage, and first degree atrioventricular block (PR interval 0.20 s) (A) and after levothyroxine therapy showing resolution of these findings (B)