Ten years’ clinical experience of cardiac myxoma: diagnosis, treatment, and clinical outcomes

To the Editor,

Cardiac myxoma (CM) is the most common type of benign primary cardiac tumor (1). Approximately more than half of primary cardiac tumors are myxomas (2). They are most commonly diagnosed between the age of 30 and 60 years (3). CM is described as a sporadic or familiar disorder in the literature (2, 3). A limited number of patients have been referred with the classical triad of obstructive cardiac symptoms: pulmonary edema, progressive heart failure (HF), and arterial embolic events. Rarely, syncope/vertigo or sudden death can be the first symptom of CM. For early diagnosis, transthoracic echocardiography (TTE) is being increasingly used. Recently, magnetic resonance imaging (MRI) and/or thoracic computed tomography (CT) have been used for prompt diagnosis. Early and optimal surgical excision have shown excellent early- and long-term results, with no recurrence of the tumor (4). According to previous studies, CMs may be diagnosed sporadically in 90% of patients (5).

In contrast to solid myxoma, papillary myxoma is characterized by a soft formation that is friable during tumor excision. Therefore, the rate of tumor recurrence is high in patients with papillary myxoma than in those with solid myxoma (4).

We treated 38 patients with CMs between June 2006 and September 2016 and retrospectively analyzed the symptoms, diagnostic methods, and treatment strategies. Briefly, the mean age of the patients who underwent primary myxoma resection was 41.7±7.8 years, and female/male ratio was 22/16. Two patients with CM were in the pediatric age group (13 and 17 years). We used two-dimensional TTE for the diagnosis of CM in all patients. If tumors other than myxomas were suspected, thoracic CT or MRI was used.

No mortality occurred in the early postoperative period. Three patients required an emergent operation because of HF. In the early postoperative period, we detected a low cardiac output syndrome, new onset of atrial fibrillation, and mediastinal bleeding in 12 patients. Mean ICU and length of hospital stay was 2.7±1.4 and 8.5±3.3 days, respectively. Two patients died at a mean follow-up of 32±13 months postoperatively. Among the 36 long-term survivors, 76% of patients were in NYHA class I, whereas 24% were in NYHA class II. Two patients who underwent left atrial myxoma resection showed a recurrence 33 and 46 months after the first surgery. Congestive HF resulting from obstructive cardiac manifestations was detected in seven patients.

CM can present with a wide range of symptomatic spectrum from being asymptomatic to having serious side effects (4, 5). Our patients with a large solid myxoma that were localized in the left atrium had a greater incidence of HF and obstructive symptoms. In accordance with our experiences, serious proteinuria or acute renal failure which may be the first sign of right atrial myxoma. Peripherial or cerebral artery embolic events are the main catastrophic symptoms related to tumor type and location. After diagnosis is confirmed, early tumor excision should be performed. Surgery has excellent overall survival and freedom from reoperation, but follow-up using TTE is recommended.

References

3. Steger CM, Hager T, Ruttmann E. Primary cardiac tumours: a single-
Sudden cardiac death in physicians: an alarming problem in China

To the Editor,

The recent revised declaration of Geneva highlights that physicians should attend to their own health, well-being, and abilities in order to provide care of the highest standard (1). Nevertheless, in China, sudden cardiac death has frequently occurred in the past 2 years. In our statistical analysis, the number of physician deaths was 17 and 23 in 2016 and 2017, respectively, which were notably increased compared with the reported 29 deaths from November 2008 to April 2015 (2). The percentage of male physicians was 95.7%. The mean age was 36.30±8.41 years. In this year, sudden cardiac death occurred in nine surgeons, five anesthesiologists, six internal physicians, and three intervention specialists. A 24-h shift or a night shift (11 cases) and preparing a ranking examination (7 cases) were the most common causes.

Male physicians, especially physicians in surgery and operative care, have larger loads and longer working hours, which may be the primary cause of death. Besides, incorrect stress relief manners also affect physicians’ heaths, such as excessive alcohol consumption, smoking, and long-term energy drink consumption (3). Lack of exercise and obesity also increase the risk of acute myocardial infarction and stroke. Physicians usually neglect regular medical checkup themselves, which results in some potential diseases not being timely detected, such as hypertension, hyperlipidemia, and hyperuricemia.

The incidence of sudden death was also closely associated with economic and social factors. Middle-aged physicians have heavy familial responsibilities, such as supporting parents, rearing children, and mortgage payments, which cause them to work harder. Deteriorated working environment, serious violence against doctors, and decreased patient–physician trust also intensified the sense of “burnout” in Chinese doctors (4, 5). Besides, because of the uneven distribution of healthcare resources in China, more than 70% of deaths were of physicians from tertiary hospitals.

We suggest that physicians should take responsibility for their own health. They should regularly perform aerobic exercise or connect with families and friends for support, instead of excessive smoking and drinking. Besides, regular medical checkup is an effective approach to decrease the risk of some potential diseases such as coronary artery disease, hypertension, and stroke. Government and media should help to improve the working environment and re-establish patient–physician trust, which may further decrease the sense of “burnout” for physicians (4, 5). Imperative changes for the assessments of physicians in China are also required to decrease the pressure of publishing papers or frequently preparing professional examinations.

Xinmiao Shi, Rui Liu
Department of Pediatrics, Peking University First Hospital; Beijing-China
Heart Center, The First Hospital of Tsinghua University; Beijing-China

References


#Xinmiao Shi and Rui Liu contribute equally to the article.

Address for Correspondence: Xinmiao Shi, MD, PhD, Department of Pediatrics, Peking University First Hospital, No.1 Xi An Men Da Jie, Beijing-China
Phone: +86 10 8357 3238
Fax: +86 10 6653 0532
E-mail: shixinmiao18286@163.com

©Copyright 2018 by Turkish Society of Cardiology - Available online at www.anatoljcardiol.com
DOI:10.14744/AnatolJCardiol.2017.8265