The cardioprotective role of trimetazidine on cisplatin-induced cardiotoxicity

To the Editor,

We have read the article by Zhao (1) entitled “Protective effects of trimetazidine and coenzyme Q10 on cisplatin-induced cardiotoxicity by alleviating oxidative stress and mitochondrial dysfunction” with great interest. The authors reported that trimetazidine and coenzyme Q10 showed protective effects against cisplatin-induced cardiotoxicity by reducing oxidative stress. First, we wish to ask the authors how they have rationalized the concentrations of trimetazidine (200 μM) and coenzyme Q10 (200 mg/L) they used in the ventricular myocytes? We would like to emphasize some important points about this well-written study.

Intracellular calcium plays a key role in cellular homeostasis. One of the most important mechanisms underlying chemotherapy-induced cardiotoxicity is increased calcium (Ca²⁺) levels in cardiomyocytes. Increased Ca²⁺ levels stimulate reactive oxygen species and there is a bidirectional interaction between these parameters (2). It has been reported that trimetazidine shows cardioprotective effects by decreasing the intracellular calcium accumulation by controlling the membrane ion gradients (3). It has been shown that caspase 3 and caspase 9 activities play an important role in mitochondrial apoptotic pathways (4). Lui et al. (5) showed that trimetazidine pretreatment could attenuate myocardial apoptosis and improve cardiac function by decreasing apoptotic rate and the expression levels of cleaved caspase 3 and 9.

Therefore, we think that measuring the aforementioned parameters, such as intracellular calcium levels and caspase 3 and caspase 9 activity, could provide insights into the cardioprotective role of trimetazidine in chemotherapy-induced cardiotoxicity.

© Murathan Küşçük, © Can Ramazan Öncel
Department of Cardiology, Faculty of Medicine, Akdeniz University; Antalya-Turkey
1Department of Cardiology, Faculty of Medicine, Alanya Aladdin Keykubat University; Antalya-Turkey

References
2. Oncel CR, Ovey IS. The role of selenium in bevacizumab induced cardiotoxicity. Bratyal Lek Listy 2019; 120: 131-8. [CrossRef]
5. Liu YC, Li L, Su Q, Liu T, Tang ZL. Trimetazidine pretreatment inhibits myocardial apoptosis and improves cardiac function in a Swine model of coronary microembolization. Cardiology 2015; 130: 130-6. [CrossRef]

Address for Correspondence: Li Zhao, MD, Department of Cardiology, Obstetrics and Gynecology Hospital of Fudan University, No. 419, Fangxie Road, Huangpu District Shanghai-China
Phone: 86-21-33189900
E-mail: zhaoli20181212@163.com
©Copyright 2020 by Turkish Society of Cardiology - Available online at www.anatoljcardiol.com
DOI:10.14744/AnatolJCardiol.2020.54058