Giant Virchow-Robin spaces may play a role at headache attributed to hypoxia and/or hypercapnia

Dev Virchow-Robin aralıkları hipoksi ve/veya hiperkapniye bağlı baş ağrısında rol oynayabilir

Ali AKYOL,1 Yelda ÖZSUNAR,2 Salıha YETER AMASYALI,3 Zehra ARIKAN,1 Ayça ÖZKUL1

Summary
According to International Classification of Headache Disorders (ICHD-III Beta version) headache attributed to hypoxia and/or hypercapnia is classified under the 4 title: 10.1.1 High altitude headache, 10.1.2 Airplane travel associated headache, 10.1.3 Diving headache and 10.1.4 Sleep apnoea headache. Headache associated with airplane travel is encountered infrequently in our clinical practice and firstly reported in 2004 as a case in the literature. The pathophysiology of headache associated with airplane travel is not yet clear. We presented this case in the aspect of the patient having both airplane travel and high altitude headaches and seen giant Virchow-Robin spaces in cranial MRI and disappearance of pain with a preventive treatment.

Keywords: Airplane travel associated headache; High altitude headache; Virchow-Robin spaces.

Özet

Anahtar sözcükler: Uçak seyahatine bağlı baş ağrısı; yüksek irtifa baş ağrısı; Virchow-Robin aralıkları.

Introduction
The airplane travel headache which is a rare type of headache firstly reported in 2004 as a case in the literature. It is increasingly seen in recent years, that’s why there has been need to proposed diagnostic criteria for this type of headache.1, 2 Subsequently, it has been validated and included in last version of International Classification of Headache Disorders (ICHD–III beta version).3 There are only the case and case series exist in the literature about the airplane travel headache.

Here, we aimed to present 41 year old male with headache during and shortly after airplane travel which was unilateral, throbbing and stabbing at the frontal region that has not been experienced before. Patient also described the same headache during road trip at the highest altitude of the same destination. Different from the other airplane travel headache, in this case there were giant Virchow-Robin spaces on cranial MR imaging.

Case Report
A 41-year-old man had a history of headaches (4 times) during airplane travels for 1 year. The headache onset was sudden and very severe intensity. Headache was beginning after the plane left ground and while it was gaining altitude, a very severe
throbbing and stabbing pain was appearing in the right supraorbital field of forehead. But it was rarely spreading parietooccipital regions. He described this as the most severe pain he had ever experienced. The mean severity was 10 on numeric rating scale (NRS). The intensity of headache was diminishing as the plane began to descent and subsided completely and spontaneously after landing. The pain was not associated with phonophobia, nausea, vomiting and autonomic symptoms such as rhinorrhea, tearing, lacrimation and other ocular manifestations. The patient had no medical history of sinus problems and any medications. The family history hasn’t shown prominent feature in terms of headaches. He smoked about 15–20 cigarettes per day for 20 years. There was no drug abuse but he was a social alcohol consumer (a glass rakı which is Turkish alcohol, once a month). Blood pressure, routine blood tests and physical and neurological examination were all normal. Brain magnetic resonance imaging (MRI) proved dilated Virchow-Robin spaces localized in the insular cortex and basal ganglia, bilaterally.

Discussion

Headache associated with airplane travel is encountered infrequently in our clinical practice. According to International Classification of Headache Disorders (ICHD-III Beta version) headache attributed to hypoxia and/or hypercapnia is classified under the 4 title: 10.1.1 High altitude headache, 10.1.2 Airplane travel

<table>
<thead>
<tr>
<th>Table 1.</th>
<th>International Headache Society diagnostic criteria for High-altitude headache and aeroplane travel associated headache</th>
</tr>
</thead>
</table>
| 10.1.1 High-altitude headache | A. Headache fulfilling criterion C
B. Ascent to altitude above 2500 m has taken place
C. Evidence of causation demonstrated by at least two of the following:
1. Headache has developed in temporal relation to the ascent
2. Either or both of the following:
a) Headache has significantly worsened in parallel with continuing ascent
b) Headache has resolved within 24 hours after descent to below 2500 m
3. Headache has at least two of the following three characteristics:
a) Bilateral location
b) Mild or moderate intensity
c) Aggravated by exertion, movement, straining, coughing and/or bending
D. Not better accounted for by another ICHD-3 diagnosis |
| 10.1.2 Headache attributed to aeroplane travel | A. At least two episodes of headache fulfilling criterion C
B. The patient is travelling by aeroplane
C. Evidence of causation demonstrated by at least two of the following:
1. Headache has developed exclusively during aeroplane travel
2. Either or both of the following:
a) Headache has worsened in temporal relation to ascent after take-off and/or descent prior to landing of the aeroplane
b) Headache has spontaneously improved within 30 minutes after the ascent or descent of the aeroplane is completed
3. Headache is severe, with at least two of the following three characteristics:
a) Unilateral location
b) Orbitofrontal location (parietal spread may occur)
c) Jabbing or stabbing quality (pulsation may also occur)
D. Not better accounted for by another ICHD-3 diagnosis |
Giant Virchow-Robin spaces may play a role at headache attributed to hypoxia and/or hypercapnia

associated headache, 10.1.3 Diving headache and 10.1.4 Sleep apnoea headache. Our case was seem to adapt with subtitle of 10.1.2 headache attributed to airplane travel. The updated ICHD-III criterias are given in Table 1. In our case, the pain was radiated to contralateral side of the head. Pain shifting to contralateral side have been reported in approximately 10% of the cases between different flights in the literature. Our patient’s headache met for this diagnosis criteria for his all 4 boardings. In reported diagnostic criteria the pain only occurs with boarding the plane.

Although there are many proposed mechanism, the pathophysiology of headache associated with airplane travel is not yet clear. Changes in nasal mucosa and sinuses such as mucosal edema may play a role in triggering headache during airplane travel. Variation of anatomical factors related to sinuses such as narrow frontal sinus outlet may also contribute to this mucosal changes. It is supposed that barotrauma caused by pressure changes within sinus cavities during take-off and landing could affect the ethmoidal nerves (branching from the ophthalmic nerve) or the nociceptors in the ethmoidal arteries, subsequently activating the trigeminovascular system which leads to headache. Furthermore, sensitization of trigeminal nerve endings due to any disorder in nasal and paranasal mucosa may cause similar maladaptation to pressure changes as well.

Previously published data has shown that similar headaches commonly occur in both during descent from high altitudes and scuba diving. In concordance with this, our case was also another model of the coexistence of headache related to in two different conditions of altitude variation. Our patient was described the same headache related to airplane travel in his another travel by driving car at the highest point of the route between the same cities (Izmir Antalya route, Korkuteli district, altitude 1020 meters). The pain was subsided with mountain descent and ceased in less than an hour. This pain was less severe (NRS: 9) with compared to airplane travel headache and it is not associated with nausea, vomiting, pallor, allodinia. But in this case headache was occurred at a lower altitude than the ICHD-3 diagnostic criteria described (>2500 meters). We supposed that the sudden occurrence and disappearance of headache was associated with altitude changes due to fast ascent and descent.

Coutinho et al. reported a case who had coexistence of headache related to in two different conditions of altitude variation that one of them was airplane headache and the other was altitude headache. Similar to our case, in this case headache was also occurred at lower altitude (2000 meters) than diagnostic criteria described. Rogers and colleagues claimed that headaches showing the same clinical features arising in different situations support the common pathophysiological mechanism. In our case, there was also coexistence of two different headaches (10.1.1 High-altitude headache and 10.1.2 Headache attributed to aeroplane travel) which support the possible common pathophysiology.

The cranial magnetic resonance imaging findings were normal in the first case of airplane travel headache in 2004 and in the subsequent reports. Whereas in our case the wide Virchow-Robin spaces were found at insular cortex and basal ganglia in cranial MRI (Figure 1). Virchow-Robin areas are perivascular spaces that around small arteries and veins entering into brain from subarachnoid area, and generally this finding is seen at any age which not lead to complaint. However this situation can cause symptoms such as ataxia in accordance with where they settled and also precipitate headache frequently. This enlarged spaces can be seen in migraine headaches and have been observed in our
case at insular cortex which is a well known brain region that plays a role in the evaluation of pain. The wide Virchow-Robin spaces were reported in migraine headaches in the literature as well as in our case suffering from airplane travel headache and high-altitude headache suggested that the expansion of these spaces in vascular headache is related to intracranial pressure compliance.

Although there is the perception that airplane travel headache is a rare situation which existing with a few case reports in the literature, this condition might be more common than expected because of underdiagnosing. Additionally, along with the clarification of the pathophysiology of this uncleared condition it would be possible to develop effective prevention or treatment.[15] After our recommendation to the patient to take indomethacin (50 mg) one hour before the trip (both by aeroplane or car) he had never had headache of last six travels. We presented this case in the aspect of the patient having both airplane travel and high altitude headaches can be seen in the same patient, and it may be related with giant Virchow-Robin spaces in the brain especially related with pain areas.

Informed Consent: Written informed consent was obtained from the patient for the publication of the case report and the accompanying images.

Conflict-of-interest issues regarding the authorship or article: None declared.

Peer-review: Externally peer-reviewed.

References