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Abstract
Incorporation of all-trans-retinoic acid (ATRA) into the treatment of acute promyelocytic leukemia (APL), a type of acute 
myeloid leukemia (AML), revolutionized the therapy of cancer in the last decade and introduced the concept of differentiation 
therapy. ATRA, a physiological metabolite of vitamin A (retinol), induces complete clinical remissions (CRs) in about 90% 
of patients with APL. In contrast to the cytotoxic chemotherapeutics, ATRA can selectively induce terminal differentiation 
of promyelocytic leukemic cells into normal granulocytes without causing bone marrow hypoplasia or exacerbation of the 
frequently occurring fatal hemorrhagic syndromes in patients with APL. However, remissions induced by ATRA alone are 
transient and the patients commonly become resistant to the therapy, leading to relapses in most patients and thus limiting 
the use of ATRA as a single agent. Therefore, ATRA is currently combined with anthracycline-based chemotherapy, and 
this regimen dramatically improves patient survival compared to chemotherapy alone, curing about 70% of the patients. 
However, 30% of APL patients still relapse and die in five years. Recently, arsenic trioxide (As2O3) was proven to be highly 
effective in inducing CRs not only in APL patients relapsed after ATRA treatment and conventional chemotherapy but also 
in primary APL patients. Despite the well-documented clinical efficacy of ATRA, molecular mechanisms responsible for 
development of ATRA resistance are not well understood. Based on in vitro and clinical observations, several mechanisms, 
including induction of accelerated metabolism of ATRA, decreased bioavailability and plasma drug levels, point mutations 
in the ATRA-binding domain of promyelocytic leukemia (PML)-retinoic acid receptor-alpha (RARα) and other molecular 
events have been proposed to explain ATRA resistance. In this review, the molecular mechanisms of ATRA-induced 
myeloid cell differentiation and resistance are discussed, together with novel clinical approaches to overcome ATRA 
resistance in APL. (Turk J Hematol 2009; 26: 47-61)
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Özet
Son 10 yıl içerisinde, all-trans retinoik asidin (ATRA) bir akut miyeloid lösemi (AML) tipi olan akut promiyelositik lösemi (APL) 
tedavisinde kullanılmaya başlanması, kanser tedavisinde kökten değişiklik yapmış ve diferansiyasyon tedavisi kavramının 
ortaya çıkmasına neden olmuştur. A vitamininin (retinol) fizyolojik bir metaboliti olan ATRA, APL’li hastaların yaklaşık 
%90’ında tam klinik remisyonları (KR) indükler. Sitotoksik kemoterapötiklerin tersine, ATRA, APL’li hastalarda kemik iliği 



Introduction

Undifferentiated phenotype is a common feature of cancer 
cells and is often associated with progressive disease and bad 
prognosis. Failure to terminally differentiate into mature blood 
cells or differentiation arrest at early steps of maturation is a 
major feature of acute myeloid leukemias (AML). Current 
standard chemotherapy cures only 30% of the AML patients, 
while about 70% of AML patients die to disease in five years, 
suggesting that alternative treatment strategies are required to 
cure these patients and increase patient survival. 

Differentiation therapy is based on the concept that 
immature leukemia progenitor cells can be forced to differentiate 
into a more mature or terminally differentiated phenotype by 
using differentiation-inducing agents. Differentiation therapy 
holds promise as an alternative or complement to standard 
chemotherapy. This type of treatment has the advantage of 
being potentially less toxic than standard chemotherapy. 
Treatment of acute promyelocytic leukemia (APL) with retinoic 
acid (RA) is the first model of differentiation therapy, and it has 
proven extremely successful in inducing clinical remission (CR) 
in most patients. All-trans-retinoic acid (ATRA) can selectively 
induce terminal differentiation of promyelocytic leukemic cells 
into normal granulocytes without causing bone marrow 
hypoplasia or exacerbation of the frequently occurring fatal 
hemorrhagic syndromes associated with chemotherapy. Thus, 
ATRA-induced differentiation of promyelocytic cells provides an 
excellent in vitro model for studying myeloid cell differentiation. 
Although development of quick resistance to the differentiation 
therapy is commonly observed, when combined with 
chemotherapy, this therapy can dramatically increase patient 
survival by enhancing the efficacy of chemotherapy.

Acute Promyelocytic Leukemia and 
Differentiation Therapy

Acute promyelocytic leukemia (APL), a M3 type of AML 
based on French-American-British (FAB) classification, is 

uniquely sensitive to undergo terminal differentiation by 
differentiation-inducing agents, such as retinoids (i.e., ATRA, 
9-cis-RA), phorbol ester, vitamin D, and dimethylsulfoxide 
As2(subscript)O3(subscript)  (DMSO). Therefore, APL represents 
an excellent model for studying differentiation of normal and 
myeloid leukemia cells.

APL, which represents 10-15% of all AML, is characterized 
by chromosomal translocations fusing retinoic acid receptor-
alpha (RARα) gene on chromosome 17 and one of four 
different genes, including promyelocytic leukemia (PML), 
promyelocytic zinc finger (PLZF), nucleophosmin (NPM), nuclear 
matrix associated (NuMA), or signal transducer and activator of 
transcription 5b (Stat5b) gene [1-5]. The most common form of 
translocations is t(15,17) (q22,q21) encoding PML-RARα 
(Figure 1) and t(11,17)(q23,q21) encoding PLZF-RARα fusion 
receptor proteins, found in 99% and >1% of APL patients, 
respectively [6,7]. The translocations are usually reciprocal 
chromosomal translocations, leading to creation of reciprocal 
hybrid receptor proteins (X-RARα and RARα-X). APLs expressing 
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hipoplazisi oluşumunu veya sık oluşan ölümcül hemorajik sendromların alevlenmesini önleyerek, seçici bir şekilde promi-
yelositik lösemik hücrelerin normal granülositlere terminal diferansiyasyonunu indükler. Buna rağmen, sadece ATRA 
tarafından indüklenen remisyonlar geçicidir ve çoğunlukla hastalar tedaviye direnç kazanırlar, bu da pek çok hastada 
hastalığın nüksüne neden olur; bu nedenle, ATRA’ nın tek ajan olarak kullanımı sınırlı hale gelir. Bu nedenle, ATRA halen 
antrasiklin bazlı kemoterapi ile kombine haldedir ve bu rejim sadece kemoterapi kullanımı ile karşılaştırıldığında, hastaların 
yaklaşık %70’ini iyileştirerek, hasta sağkalımını önemli ölçüde arttırmaktadır. Buna rağmen, APL hastalarının halen 
%30’unda hastalık nüks etmekte ve 5 yıl içerisinde ölüm gerçekleşmektedir. Son zamanlarda, arsenik trioksit (As2O3)’ in, 
sadece ATRA tedavisi ve klasik kemoterapiden sonra nükseden APL hastalarında değil, aynı zamanda, primer APL 
hastalarında da KR’leri indüklemede yüksek oranda etkili olduğu ispatlanmıştır. ATRA’nın yazılı kanıtlara dayanan klinik 
etkinliğine rağmen, ATRA direncinin gelişmesinden sorumlu olan moleküler mekanizmalar tam olarak anlaşılmamıştır. İnvitro 
ve klinik gözlemlere dayanarak, ATRA’nın hızlanmış metabolizmasının indüksiyonu, azalmış olan biyoyararlanım ve plazma 
ilaç düzeyleri dahil çeşitli mekanizmalar, PML-RARα’nın ATRA-bağlayan domain yapısında nokta mutasyonu ve diğer 
moleküler olaylar ATRA direncini açıklamak üzere öne sürülmüştür. Bu derlemede, APL’de ATRA direncinin üstesinden 
gelmek için, ATRA ile-indüklenmiş miyeloid hücre farklılaşmasının, direncin ve yeni klinik yaklaşımların moleküler 
mekanizmalarını ele alacağım.  (Turk J Hematol 2009; 26: 47-61)
Anahtar kelimeler: Akut promiyelositik lösemi, all-trans retinoik asit, tedavi, direnç, histon deasetilaz, arsenik, metabolizma
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Figure 1. Oncogenic PML-RARα receptor proteins expressed in APL due 
to chromosomal translocation t(15;17). Chromosomal translocations involve 
retinoic acid receptor alpha (RARα) gene on chromosome 17 and either 
promyelocytic leukemia (PML) gene.  Breakpoints may vary in the PML 
gene; however, it is always located in the same point in the RARα gene



PML-RARα, NPM-RARα or NuMA-RARα are responsive to 
ATRA-induced differentiation effects, with the exception of 
PLZF-RARα type APL, which is resistant to ATRA [8-11]. 

Retinoids and All-Trans-Retinoic Acid 
 
Retinoids are a family of molecules that are structurally 

related to retinol (vitamin A), and are known to play a critical 
role in many physiological functions, such as cell proliferation, 
differentiation, apoptosis, homeostasis, reproduction, and fetal 
development [12]. Retinol is absorbed from the diet in the form 
of retinyl-esters or β-carotene and stored in the liver as retinyl 
palmitate. 

All-trans-retinoic acid (ATRA, tretinoin), 9-cis-RA, 13-cis-
RA, isotretinoin), and retinal are physiologic or synthetic 
derivatives of retinol [13]. Even though only a small percent of 
retinol and β-carotene are converted to ATRA and 9-cis-RA, 
they are ~100- to ~1000-fold more potent than other natural 
retinoids. Retinol, ATRA and 13-cis-RA are found in the human 
plasma at levels of ~ 2 μM, ~8 nM and ~5 nM, respectively, and 
can induce differentiation of PML cells. 

Modulation of Biologic Effects of Retinoids 
Through Nuclear Receptors 
Retinoid receptors belong to a superfamily of ligand-inducible 

transcription factors including steroid, vitamin D, thyroid hormone, 
peroxisome proliferator-activated receptor, and orphan receptors 
with unknown functions [14]. Two classes of nuclear RARs and 
retinoid X receptor (RXR), each consisting of three isotypes (α, β 
and γ) encoded by separate genes and their isoforms (e.g., α1, 
α2, β1- β4, γ1 or γ2), have been identified and discussed in great 
detail in recent reviews [14,15]. 

RARs and RXRs contain different domains, A through F, 
with diverse functions (Figure 2A). A and B domains located at 
the amino terminal of each particular receptor contain isoform- 
specific, ligand-independent transactivation functions, AF-1 
(14). These receptors bind to retinoic acid response elements 
(RARE) through a conserved DNA binding domain (C domain) 
containing ZF motifs [14]. Ligands (retinoids) bind to a ligand 
binding domain (LBD) or E domain at the C-terminus of the 
receptors that contain sequences involved in dimerization of 
the receptors, ligand-dependent transactivation (AF-2), and 
translocation to the nucleus [16]. The functions for F and D 
domains have not been clearly defined.

The complex diversity and pleiotropic effects in the retinoid 
signaling pathway are provided not only due to existence of 
multiple isoforms of RARs but also as a result of combinations 
of RAR-RXR heterodimers or homodimers and the presence of 
different ligands [14,17]. The RARs can be transcriptionally 
activated by binding to either ATRA or 9-cis-RA; however, 
RXRs can be activated only by 9-cis-RA and not by 13-cis-RA 
or ATRA. 13-cis-RA, a stereoisomer of ATRA, shows a lower 
affinity for RARs and RXRs (Figure 2) [18]. Upon ligand binding, 
activated nuclear receptors that bind to RAREs found in the 
upstream sequences (promoters) of RA responsive genes lead 
to transcription of the target genes. RARα plays a major role in 
ATRA-induced differentiation in HL-60 myeloid cells [19,20]. 

However, RXRα mediates induction of apoptosis in the same 
cell line by ATRA or 9-cis-RA [20]. ATRA treatment of APL cells 
induces expression of RARα mRNA, suggesting that ATRA can 
also modulate its own receptor, RARα, in addition to 
differentiation-related genes [21]. The availability of the retinoid 
ligands to its cognate receptors can be determined by the level 
of presence of certain non-receptor proteins, such as 
cytoplasmic RA-binding proteins and heat shock proteins [22]. 
Moreover, isoforms of PML-RAR may alter the retinoid signaling 
with or without ligand binding (Figure 2B).

Pathogenesis of Acute Promyelocytic Leukemia 

PML-RARα fusion receptor protein is expressed at high 
levels in APL blasts and interferes with the physiologic functions 
of PML and RARα proteins, exerting a dominant negative 
effect [1,23]. Expression of the PML-RARα fusion receptor 
protein blocks differentiation of myeloid precursor cells at the 
promyelocytic stage, leading to accumulation of immature 
hematopoietic cells in the bone marrow [24-26]. It was also 
shown that overexpression of dominant negative or wild type 
RARα causes a differential block at the promyelocytic stage 
[27]. Recently, transgenic mice expressing PML-RARα had a 
block at the promyelocytic stage of myeloid maturation in blast 
cells, implicating the important role of PML-RARα abnormal 
receptor protein in leukemogenesis [26,28,29].

PML is involved in the regulation of proliferation and 
apoptosis [30,31]. Cells lacking PML are resistant to apoptosis 
by gamma irradiation, grow faster and have longer survival 
time, while cells overexpressing PML undergo apoptosis by the 
same stimulus [30,32]. It was shown that PML is located in the 
nucleus of normal cells in punctuate nuclear structures (PODs) 
or nuclear bodies associated with nuclear matrix; however, in 
PML-RARα-positive APL cells, localization and the normal 
pattern of nuclear bodies are disrupted [24,33,34]. Overall data 
suggest that disruption of PML function has been proposed to 
contribute to the APL pathogenesis [24,35]. 
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Figure 2.  A. Retinoid nuclear receptors in normal cells. ATRA and its 
isomers (9-cis-RA and 13-cis-RA) bind ligand binding domain for trans-
activation of the target genes. B. Receptor fusion proteins due to the 
translocation t(15;17). t(15:17) lead to expression of three different PML-
RAR alpha isoforms



Molecular Basis of ATRA Therapy in APL

ATRA induces differentiation of immature leukemic blasts 
into terminally differentiated granulocytic cells, which is 
associated with CRs [8,9,35]. ATRA-induced differentiation of 
APL blasts requires expression of PML-RARα receptor protein 
[11]. PML-RARα can heterodimerize with RXR or form 
homodimers and subsequently binds to RARE, located in the 
promoters of the ATRA-responsive target genes. ATRA can 
bind to PML-RARα with an affinity comparable to RARα. In the 
absence of ligand, RAR-RXR in normal blasts and PML-RARα-
RXR heterodimers in APL cells recruit nuclear co-repressor 
proteins, NCoR or silencing mediator of retinoid and thyroid 
hormone receptor (SMRT), and Sin3A or Sin3B, which in turn 
form a complex with histone deacetylase enzymes (HDAC1 or 
HDAC2), resulting in transcriptional repression or silencing 
[36-38] (Figure 3A and B). The transcriptional suppression 
occurs because deacylation of histone protein creates 
conformational changes, limiting access and binding of 
transcription factors and RNA polymerase to related genes 
(Figure 3A) [39]. At physiologic concentrations of ATRA (10-9-
10-8 M), the NCoR protein and HDAC complex are dissociated 
from RARα in normal blasts, which in turn results in recruitment 
of co-activators with histone acetyltransferase (HAT) activity, 
such as steroid receptor coactivator-1 (SRC-1), PCAF, p300/
CBP, ACTR, TIF2 or P/CIP [40-42]. Acetylation of lysine residues 
in the N-terminal of histones by HAT activity results in 
transactivation of responsive genes leading to differentiation. 
However, the physiologic concentration of ATRA does not cause 
dissociation of NCoR protein and HDAC complex from the PML-
RARα fusion receptors in APL blasts, leading to differentiation 
block (Figure 3B). The CoR complex is dissociated from PML-
RARα at only pharmacological concentrations (10-7 - 10-6 M) of 
ATRA, resulting in removal of transcriptional repression and 
transcription of genes related to differentiation [38-43].

In addition to release of transcriptional repression, the other 
possible mechanisms involved in ATRA effectiveness in myeloid 
cell differentiation include expression of different classes of 
genes including induction of expression of p21WAF1/Cip1 cyclin-
dependent kinase inhibitor [44], upregulation of C/EBP-γ,β, 
and ε [45], interferon regulatory factor-1 (IRF-1) [46], and 
regulation of the localization of PODs [47]. In APL cells isolated 
from patients, ATRA upregulates expression of RARα at mRNA 
and protein levels [48,49], whereas it causes the degradation 
of PML-RARα [50-52]. Therefore, the ratio of RAR/RXR to 
PML-RARα would be higher, which helps in overcoming the 
dominant negative effects of PML-RARα protein.

Resistance to Differentiation Therapy 

ATRA therapy (45 mg/m2/day) induces complete remission 
in 72%-95% of APL patients through induction of differentiation 
of immature promyelocytic blast cells into mature granulocytes, 
which subsequently undergo apoptosis [53-56]. The success 
of ATRA in the induction of complete remission in APL patients 
represents the first differentiation therapy in cancer and now 
constitutes a front-line treatment in combination with 
chemotherapy [54-55].

Unfortunately, resistance to ATRA treatment was 
encountered in the early clinical trials [56-59]. Later clinical 
studies demonstrated that ATRA as a single agent can not 
maintain remission and almost all APL patients routinely relapse 
within three months to one year [54,55,60-63]. The resistance 
is acquired rapidly in most cases within 1-3 months of ATRA 
[57]. Therefore, ATRA-induced CR is now combined with 
chemotherapy (i.e. anthracyclines) [54,55,62].

Pharmacokinetic studies showed that chronic oral 
administration of ATRA results in progressive decline in plasma 
drug concentrations, which associates with early relapses and 
resistance to ATRA in APL patients [61,64-66]. Plasma levels 
of ATRA, which usually start to decline as early as one week 
from the initiation of ATRA therapy, probably result in decreased 
intracellular ATRA levels below effective pharmacological 
concentration [67,68]. The higher ATRA plasma concentration 
correlates with lower peripheral blast count in APL patients 
[67]. The reduction in plasma levels after administration of 
ATRA has been observed in other species such as monkeys 
and mice [69,70]. However, this phenomenon is not seen with 
ATRA isomers such as 9-cis-RA and 13-cis-RA, suggesting 
that ATRA uptake and metabolism are different from its isomers 
[67]. Recently, it was shown that higher intracellular concentration 
of ATRA correlates with ATRA-induced differentiation of APL 
cells, indicating the importance of keeping ATRA at levels that 
support differentiation [71,72].

Relapsing patients were shown to be resistant to higher 
doses of ATRA, and doubling the initial ATRA dose failed to 
induce CR and to maintain stable plasma ATRA concentrations 
[61]. In addition, APL cells isolated from patients at the time of 
relapse were sensitive to ATRA (10-6 M) in vitro [61]. However, 
the response to ATRA was found to be decreased in vitro 
sensitivity in half of the cases in terms of induction of 
differentiation [57,65]. Interestingly, it was observed that 
acquired resistance to ATRA may be reversible after 
discontinuation of the ATRA therapy and patients may gain 
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Figure 3.  Molecular mechanisms causing transcriptional repression and 
differentiation block in APL. Nuclear co-repressor proteins, N-CoR or 
SMRT, and Sin3A or Sin3B, form a complex with histone deacetylase 
enzymes (HDAC1 or HDAC2), resulting in transcriptional repression or 
silencing. HDAC activity causes deacylation of histone protein, causing 
conformational changes, which in turn prevent transcription of target 
genes. Ac: Acetylated histones



sensitivity to ATRA, usually in 6 months to 24 months, 
suggesting that ATRA resistance is reversible [57,65,73,74].

 After in vitro and clinical experiences with ATRA over a 
decade, the following mechanisms involved in development of 
the drug resistance have been proposed (Figure 4): 1) induction 
of accelerated metabolism of ATRA; 2) increased expression of 
cellular retinoic acid binding proteins (CRABPs); 3) constitutive 
degradation of PML-RARα; 4) point mutations in the LBD of 
RARα of PML-RARα; 5) P-glycoprotein expression; 6) 
transcriptional repression by HDAC activity; 7) isoforms of 
PML-RARα; 8) persistent telomerase activity; 9) expression of 
type II transglutaminase; and 10) topoisomerase II activity.

1. Accelerated ATRA metabolism 
The major pathway for ATRA inactivation is the oxidative 

metabolism by microsomal cytochrome P450 isoenzyme 
system that is initiated by the 4-hydroxylation of ATRA to form 
4-hydroxy-RA and 4-oxo-RA (Figure 5) [75-78]. Chronic oral 
administration of ATRA results in autoinduction of ATRA 
metabolism by cytochrome P450-dependent enzymes, leading 
to progressive reduction in plasma ATRA concentrations, 
which may be the most important mechanism for development 
of resistance to therapy. The decrease in peak plasma levels of 
ATRA is associated with urinary excretion of 4-oxo-ATRA, 
which is found to be increased about 10-fold during the 
continuous ATRA treatment, suggesting that decreased plasma 
levels of ATRA may not be due to impairment in the gastrointestinal 
uptake of the drug [61]. In vitro and in vivo studies with 
cytochrome P450 inhibitors (ketoconazole and liarozole), which 
suppress ATRA metabolism, resulted in increased plasma levels 
and delayed ATRA plasma clearance in animals and humans, 
thus further supporting this hypothesis [79-81].

Recently, a novel human p450 enzyme (CYP26) with 
specific RA 4-hydroxilase activity, was cloned from zebrafish, 
mouse and human [82-85]. CYP 26, which is rapidly inducible 
by ATRA, is expressed in tissues, including liver, kidney, lung, 
placenta, skin, and intestinal cells [82,84,86]. ATRA-induced 
expression of CYP26 was also shown in some human tumors 
such as hepatocellular carcinoma cell line, non-small cell lung 
carcinoma, breast cancer cells, as well as myeloblastic and 
PML cells [84,86-88]. The expression of full-length human 
cDNA for CYP26 in transfected cells closely correlated with the 
accumulation of 4-hydroxy-RA and 4-oxo-RA, the major 
metabolic products of ATRA [84]. CYP26 metabolizes ATRA 
into 4-hydroxy-ATRA, 4-oxo-ATRA, 18-hydroxy-ATRA and 
polar metabolites in F9 cells [89]. CYP26 was shown to be 
highly specific for the hydroxylation of ATRA but not for the 
hydroxylation of 13-cis RA or 9-cis-RA [87]. Several studies 
demonstrated that the expression of CYP26 is regulated by 
RARs and RXRs, suggesting a feedback loop mechanism for 
the regulation of ATRA levels [86,87,89,90]. We found that 
pharmacological doses of ATRA induce acute expression of 
CYP26 mRNA in myeloid (HL-60) and PML (NB4) cells. Its 
expression in these cells is regulated solely by RARα type 
receptor, indicating the existence of substrate-mediated control 
of ATRA metabolism [86]. The induction of CYP 26 expression 
in response to ATRA treatment is reversible and dependent on 
the continuous presence of ATRA, since the expression 

returned to baseline after withdrawal of the ATRA [86]. These 
studies suggested that ATRA-induced CYP26 expression 
might be responsible for the accelerated metabolism of ATRA, 
leading to decreased sensitivity and acquired resistance to 
ATRA in APL patients. 

Intracellular levels of ATRA are strictly controlled through 
regulation of synthesis, metabolism and probably uptake. 
CYP26 is highly inducible and specific for hydroxylation of 
ATRA; thus, it might be the most important in the P450 enzyme 
system for the regulation of plasma and intracellular levels of 
ATRA. It has been shown that CYP1A1, CYP2C8, CYP2C9 
and CYP3A4 in microsomes of human liver cells were able to 
hydroxylate ATRA, but none of these enzymes at protein and 
mRNA levels were inducible by ATRA and have low specificity 
for ATRA [91,92].

It is likely that the metabolic fate of ATRA after continuous 
administration is determined by the induction of CYP26 in 
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Figure 4.  Metabolic pathways leading to inactivation of ATRA. P450-
mediated metabolism is the major pathway for inactivation of ATRA

Figure 5.  Possible mechanisms involved in development of ATRA resis-
tance. Selective P450 inhibitors and liposomal ATRA may circumvent 
metabolic pathways and mechanisms involved in accelerated elimination 
of ATRA



leukemia and other metabolically active tissues such as the 
liver, intestine and skin. Following ATRA treatment, increased 
CYP26 activity in PML cells may reduce intracellular ATRA 
concentrations below the level that does not support 
differentiation, thus leading to ATRA resistance.

2. Increased cellular RA binding proteins (CRABPs)
In the cytoplasm, ATRA is bound by CRABPs I and II. 

CRABPs, which are conserved in vertebrates, are high affinity 
proteins for ATRA [93,94]. CRABP-I is expressed in almost all 
types of cells, whereas CRABP-II is expressed mainly in the 
skin. The difference in tissue expression patterns suggest that 
CRABP-I and CRABP-II have distinct functions in ATRA-
mediated responses [95-97]. Early studies linked CRABPs with 
metabolism and regulation of cytoplasmic levels of ATRA. 
Therefore, the other possible explanation for progressive 
decline in the plasma levels of ATRA after continuous therapy 
with the drug may be the induction of CRABPs. It has been 
proposed that high levels of CRABP may sequester intracellular 
ATRA, resulting in decreased drug levels in plasma as well as 
in normal bone marrow and APL cells [57,65,98,99].

It was shown that the rate of ATRA metabolism in F9 
teratocarcinoma but not in transfected CV-1 and COS-7 cells 
correlates with the expression levels of CRABP-I, suggesting 
that CRABP-I regulates the metabolism of ATRA depending on 
cell type [22,100]. Boylan et al. [100] also showed that 
increased CRABP-I expression resulted in decreased sensitivity 
of F9 cells to ATRA-induced differentiation, suggesting that this 
molecule functions as a regulator of intracellular ATRA levels by 
delivering ATRA to microsomes, facilitating catabolism, and/or 
by sequestering ATRA (Figure 4). CRABP molecules have been 
shown to be present not only in cytoplasm but also in the 
nucleus, suggesting that CRABPs may function to deliver 
ATRA to the nuclear retinoid receptors. It is also possible that 
CRABPs may be involved in transcriptional activation or 
inhibition of RARs [22,100]. Dong et al. [101] showed that 
expression of CRABP-II, but not CRABP-I, significantly induced 
RAR-mediated transcriptional activation of a reporter gene, 
indicating that CRABP-II indeed may be involved in 
transcriptional activity of ATRA. Recent studies in breast cancer 
and APL cell lines showed that CRABP-II associates with 
RARα and RXRα complex in a ligand-independent manner 
[102]. CRABP-II may function as a transcriptional regulator of 
ATRA signaling by binding RARE on the target genes as part of 
the receptor complex [101-103].

Increasing levels of CRABP-II were shown in normal and 
leukemia cells of APL patients undergoing ATRA treatment 
[57]. The investigators found that CRABP-II reached maximum 
levels after three months of continuous ATRA treatment and its 
levels decreased within a month after ATRA withdrawal. In 
relapsing patients, high levels of CRABP-II were detected in 
APL cells but not before ATRA therapy, suggesting that in a 
hypermetabolic state, excess CRABP might bind ATRA and 
prevent drug transport to the nucleus [57]. CRABP might also 
act as a transporter to the microsomes in the endoplasmic 
reticulum (ER) where ATRA is metabolized. Recently, Zhou et 
al. [104], however, found no difference between CRABP II 
levels in pretreatment and at the time of relapse in APL patients. 

Constitutive expression of CRABP II implicates that it may not 
be related to ATRA resistance in APL patients. Interestingly, 
CRABP-I/II knockout mice did not show significant phenotype 
difference or signs of toxicity, indicating that these proteins may 
not play an important role in the regulation of ATRA metabolism 
and signaling [105].

9-cis-RA and 13-cis-RA have stable plasma concentrations 
after continuous administration. This might be due to their 
lower affinity for CRABP compared with ATRA, which has 
progressive reduction of plasma levels with continuous 
treatment. The other possibility might be that these isomers do 
not induce specific p450 enzymes as ATRA does.

3. Mutations at the ligand binding domain of RARα 
Leukemic blasts isolated from some ATRA-resistant APL 

patients are less sensitive or completely resistant to ATRA and 
9-cis RA-mediated differentiations in vitro, suggesting that 
ATRA resistance mechanisms may involve selection of ATRA-
resistant clones [106]. Point mutations in the LBD (E-domain) 
of RARα in HL-60 cells and LBD of RARα of PML-RARα fusion 
protein in NB4 cells can be induced by prolonged culture in the 
presence of ATRA; thus, this point mutation leads to ATRA 
resistance [19,107-110]. Shao et al. [108] identified a point 
mutation located at the amino acid 398, L398P (leucine 
replaced by proline), in LBD of PML-RARα in an ATRA-resistant 
NB4 clone (NB4-R4). The mutant receptor does not bind 
ATRA, but was able to bind RXRα and RARE, expressing 
dominant negative activity (Figure 4). They also found that 
pharmacological doses of ATRA could not dissociate the 
co-repressor SMRT from mutant PML-RARα, preventing 
expression of ATRA-responsive target genes. 

 Recently, point mutations leading to amino acid substitution 
in the E-domain (LBD) of RARα of PML-RARα fusion receptor 
protein were also detected in APL cells isolated from relapsing 
patients [111-113]. The mutations were absent before ATRA 
treatment. Imaizumi et al. [112] reported acquisition of missense 
mutations of G815A or A889 in a sequence of RARα cDNA, 
leading to amino acid replacement of R272Q (arginine to 
glutamine) and M297L (methionine to leucine) in RARα of PML-
RARα. The mutations found in APLs isolated from two patients 
at the time of relapse, exhibiting ATRA resistance, were localized 
to the middle region of the E-domain. However, mutations 
detected in ATRA-resistant HL-60 and NB4 subclones are 
located at the carboxyl-terminal of the E-domain [108,114]. 
Furthermore, site-directed mutagenesis at A272 of RARα has 
been shown to inhibit binding of ATRA to RARα [115]. Recently, 
Marasca et al. [116], also reported that although no mutation 
could be detected before the onset of ATRA treatment, point 
mutations in LBD of PML-RARα in two relapsed patients were 
observed, confirming previous findings. Ding et al. [111] found 
mutations in PML-RARα in APL blasts of 3 of 12 patients 
following ATRA treatment. The mutations were located at 
codons 290 (L290V), 394 (R394W), and 413 (M413T). 

These mutations interfere with ATRA binding activity and 
result in dominant negative function leading to resistant state 
and providing growth advantage of APL blasts carrying the 
mutation. Currently, the percent of ATRA-resistant patients 
having these mutations is not known. Therefore, studies with 
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larger numbers of patients are required to clarify the clinical 
importance of these mutations.

4. Constitutive degradation of PML-RARα 
Expression of PML-RARα has been linked to initial ATRA 

sensitivity [24]. NB4 cells expressing dominant negative PML-
RARα are resistant to ATRA and failed to upregulate tissue 
transglutaminase II expression [108]. Expression of the PML-
RARα protein in U937 cells enhanced the sensitivity to RA-induced 
differentiation [24]. These results suggested the biological function 
for PML-RARα to transactivate differentiation-related genes that 
are critical for therapeutic response of ATRA in APL.

ATRA therapy was shown to induce degradation of PML-
RARα through the action of proteosome, likely by caspases 
3-like activity in APL cells isolated from patients and NB4 as 
well as U937 myeloid precursor cells expressing PML-RARα 
[50-52,117]. Fanelli et al. [52] demonstrated that ATRA-
resistant NB4 subline, which was selected under the selective 
pressure of ATRA, expresses normal levels of PML-RARα 
mRNA, but does not express PML-RARα protein. They were 
able to partially restore ATRA sensitivity in the ATRA-resistant 
NB4 cells by proteosome inhibitors by blocking the degradation 
of the fusion receptor protein. Similarly, expression of PML-
RARα by retrovirus-mediated transduction resulted in 
restoration of ATRA sensitivity in ATRA-resistant NB4 cells 
protein [52]. These results suggested that alterations in the 
proteosome pathway resulting in constitutive degradation of 
PML-RARα protein may lead to ATRA resistance, since 
previous data showed that expression of PML-RARα is critical 
for ATRA sensitivity in APL cells [52]. Downregulation of PML-
RARα by ATRA probably results in reorganization of the PML 
nuclear bodies. Nervi et al. [117] found that prevention of 
ATRA-induced degradation of fusion protein by a member of 
the caspase 3 family did not abolish the ATRA-induced 
differentiation, suggesting that PML-RARα is involved in ATRA 
sensitivity of APL cells. 

Interestingly, the short isoform of PML-RARα (bcr3-PML-
RARα), which is found in about 35% of APL patients, does not 
contain the caspase cleavage site (Asp522, α-helix, located in 
PML part) and is not degraded after ATRA treatment 
[24,115,118,119]. However, these APL patients with the short 
isoform respond to ATRA, indicating degradation of PML-
RARα may not be essential for ATRA-induced differentiation 
[120]. It is not known if ATRA treatment results in degradation 
of other ATRA-sensitive variants of APL with NPM-RARα or 
NuMA-RARα. Whether ATRA-induced degradation of PML-
RARα is a cause or result of therapy needs to be clarified.

 
5. P-glycoprotein expression 
P-glycoprotein (P-gp) is a membrane protein functioning as 

an ATP-dependent drug efflux pump that decreases intracellular 
accumulation of various lipophilic compounds (Figure 4) [121-
124]. P-gp is the product of the multidrug resistance-1 (MDR1) 
gene that confers drug resistance to a variety of agents. P-gp 
is overexpressed in a variety of human tumor cells, leading to 
resistance to chemotherapy [121,123,125]. Therefore, it is 
possible that increased expression of P-gp results in resistance 
of APL cells to ATRA by decreasing intracellular ATRA 

concentrations. It has been shown that expression of P-gp is 
low in newly diagnosed APL patients, but higher in APL cells 
isolated from two relapsed ATRA-resistant patients [126]. It 
was also reported that expression of P-gp in HL-60 was lower 
when compared to ATRA-resistant HL-60 cells [126]. Moreover, 
treatment of HL-60 cells with P-gp antagonist (Verapamil) in the 
presence of ATRA partially restored ATRA resistance in 
resistant HL-60 and APL cells, implying that P-gp may play a 
role in ATRA resistance. More importantly, the direct evidence 
indicating that P-gp is responsible, in part, for acquisition of 
ATRA resistance in APL cells came from the experiment using 
ribozymes, which are able to target MDR1 RNA by a catalytic 
activity. HL-60-resistant cells stably transfected with 196 
MDR1 ribozyme showed inhibition in the expression of MDR1 
and were able to undergo differentiation and growth inhibition 
in a dose-dependent manner.

However, Takeshita et al. [127] recently reported that they did 
not find any difference in the intracellular levels of ATRA between 
parental (mock-transfected) and MDR1-transfected NB4 cells. 
They found similar results with APL cells isolated from patients 
relapsed after ATRA therapy, suggesting that P-gp may not be 
involved in the development of ATRA resistance [127]. P-gp 
expression is significantly lower in APL than in other AML cells 
[128]. This may be an important mechanism providing a 
biological basis for sensitivity of APL cells to chemotherapy and 
ATRA when compared to the AMLs. 

6. Histone deacetylase (HDAC) activity
 APL cells expressing PLZF-RARα receptor fusion protein 

are resistant to ATRA-induced differentiation [3,28]. Recent 
findings revealed that the RA-signaling pathway is constitutively 
repressed by HDAC activity at physiologic levels of ATRA in 
PLZF-RARα type APL blasts, leading to transcriptional 
repression/silencing and differentiation block [36,37]. The 
RARα part of PML-RARα fusion protein has one binding site 
for NCoR proteins and HDAC complex that is removed by 
binding of ATRA to PML-RARα/RXR dimer; thus, 
pharmacological concentrations of ATRA induce differentiation 
of PML-RARα-positive APL blasts in vitro and in vivo [36]. 
However, the same effect is not observed in PLZF-RARα-
positive APL cells, since PLZF-RARα protein has two NCoR 
protein binding sites [38,43]. In order to transactivate responsive 
genes leading to cell differentiation, the removal of both of the 
CoR complexes from the PLZF-RARα is required. Even though 
ATRA is able to dissociate NCoR proteins and HDAC complex 
from RARα of PML-RARα protein, the second CoR proteins and 
HDAC complex can not be removed. Therefore, while ATRA 
induces differentiation of PML-RARα-positive APL blasts at 
pharmacological concentrations, PLZF-RARα-expressing blasts 
are resistant to ATRA-induced differentiation unless a HDAC 
inhibitor such as trichostatin A is used [36,43,129,130]. The 
presence of HDAC inhibitors and ATRA induces significant 
differentiation in most resistant APL cells with PLZF-RARα [36]. 

7. The role of PML/RARα isoforms in resistance 
Variable breakpoints on the PML gene on chromosome 15 

result in expression of distinct PML-RARα isoforms (Figure 1 and 
2B) [54,131]. Short (S) isoform (bcr3) is created by a breakpoint 
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in intron 3, while long (L) isoform (bcr1) results from a breakpoint 
located in intron 6 of the PML gene, found in 35% and 60% of 
adult APL patients with t(15,17), respectively [6,132]. The rest of 
the patients have the other isoform called variable (V), having a 
breakpoint located in exon 6 of PML [133]. The S isoforms of 
PML-RARα associate with high white blood cell (WBC) count, 
M3v type morphology, CD34 and CD2 expression, and 
secondary cytogenetic abnormalities [118,120,134].

Although no significant correlation between type of PML-
RARα isoform and ATRA-induced clinical response was found in 
most studies, in some studies, patients expressing S type PML-
RARα had shorter remission time and poor prognosis with ATRA 
therapy [135-137]. In vitro treatment of APL blasts from patients 
with S and L type by ATRA was shown to induce differentiation 
of these blasts to a similar degree [138]. However, when 
compared to L isoform, the S isoform has lower binding affinity 
for ATRA but higher affinity and specificity for 9-cis-RA [6]. 
Gallagher et al. [138] showed that APL cells from patients with V 
(Bcr2) isotype have decreased in vitro response to ATRA. 

A recently completed clinical study with liposomal ATRA at 
our institution reported that CR rates were 50% (4 of 8 patients) 
in the patients with S isoform and about 86% (6 of 7 patients) 
in patients with L isoform, suggesting that S isoform might play 
a role in resistance to ATRA [139]. Overall, based on the data 
available, it is hard to find a clear correlation between the type 
of PML-RARα isoform and outcome of ATRA therapy. 

8. Telomerase Activity
It has been reported that there is a link between decreased 

telomerase activity and terminal differentiation of some tumor 
cells, including NB4 cells [140-143]. Nason-Burchenal et al. 
(144) showed that ATRA-resistant NB4 cells did not have 
repression in the activity of telomerase after ATRA treatment 
compared to ATRA-sensitive NB4 cells. However, when ATRA-
sensitive and -resistant NB4 cells were treated by phorbol 
12-myristate 13-acetate (PMA) and vitamin D3, all cells were 
induced to differentiate into monocytic cells and telomerase 
activity markedly declined, suggesting that persistent 
telomerase activity may be linked to ATRA resistance. This 
effect might be due to a defective signaling in ATRA-resistant 
cells, resulting in a block in decreasing telomerase activity.

 
9. Tissue Transglutaminase Expression 
Transglutaminase II (Tgase-II) is a calcium-dependent 

enzyme that catalyzes an amine incorporation and a cross-
linking of proteins. Intracellular Tgase-II was induced when 
human PML cells (NB4) and fresh leukemia cells were isolated 
from APL patients treated with RA. It was reported that ATRA 
induces Tgase-II mRNA in NB4 cells but not in ATRA-resistant 
NB4 cells or in APL patient cells lacking the t(15,17). This 
induction correlated with ATRA-induced growth arrest and 
granulocytic differentiation. ATRA did not induce growth arrest 
and differentiation and type II Tgase activity in an ATRA-resistant 
subclone of the NB4 cell line, or in leukemic cells derived from 
two patients morphologically defined as APL but lacking the 
t(15,17). ATRA induced expression of Tgase II in U937 cells 
transfected with PML-RARα but not in untransfected U937 
cells, indicating that Tgase expression may be mediated by 

PML-RARα [145]. ATRA-induced expression of Tgase II in 
HL-60 cells is mediated by RXRα [20,146]. Induction and 
expression of Tgase II in HL-60 and other cell types are 
associated with apoptosis [146]. It is also suggested that Tgase 
II expression may be related to induction of differentiation, since 
its expression is an early event in response to ATRA treatment. 
Therefore, loss of Tgase II induction in resistant cells may be an 
important factor resulting in resistance to ATRA therapy.

10. Topoisomerase II Activity
Recently, McNamara et al. demonstrated that topoisomerase 

II beta associates with and negatively modulates RARalpha 
transcriptional activity and that increased levels of and 
association with TopoIIbeta cause resistance to RA in APL cell 
lines [147]. They showed that knockdown of TopoIIbeta could 
overcome resistance by permitting RA-induced differentiation 
and increased RA gene expression. Overexpression of 
TopoIIbeta in clones from an RA-sensitive cell line caused 
resistance by a reduction in RA-induced expression of target 
genes and differentiation. Using chromatin immunoprecipitation 
(CHIP) assays, they also demonstrated that TopoII-beta is 
bound to an RA response element and that inhibition of TopoII-
beta causes hyperacetylation of histone 3 at lysine 9 and 
activation of transcription, suggesting a novel mechanism of 
resistance. However, this mechanism needs to be validated in 
samples from ATRA-resistant patients in terms of frequency 
and significance.

Potential Treatment Strategies to Overcome 
ATRA Resistance in APL

1. Liposomal ATRA: New treatment modalities are being 
investigated to overcome ATRA resistance and to further 
improve the disease outcome. To circumvent accelerated 
metabolism of ATRA, liposome incorporated-ATRA, inhibitors 
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Figure 6. Possible strategies to prevent accelerated metabolism of 
ATRA. Selective P450 inhibitors and liposomal ATRA may circumvent 
metabolic pathways and mechanisms involved in accelerated elimination 
of ATRA



of the cytochrome p450 enzyme system, such as ketoconazole 
and liarozole, and lower or intermittent doses of ATRA 
administration have been tested [60,73,74,80,148]. 

Liposomal ATRA was developed to provide an intravenous 
(I.V.) formulation to generate potential pharmacological 
advantages over the oral formulation (Figure 6) [148]. An I.V. 
administration of liposomal-ATRA was shown to be superior to 
oral ATRA (non-liposomal) in terms of maintaining higher 
plasma levels in animal models and in humans [139,149-152]. 
I.V. administration of liposomal ATRA to rats over a prolonged 
period (7 weeks) did not cause a decrease in the levels of ATRA 
in plasma over time [149]. In contrast, chronic oral administration 
of ATRA (non-liposomal) in rats resulted in decreased drug 
plasma concentrations after the same period of time. In the 
same study, liver microsomes isolated from animals that were 
repeatedly treated with oral ATRA showed a significant increase 
in metabolism of the drug in vitro. However, microsomes 
isolated from animals that received I.V. liposomal ATRA the 
same number of times with the same doses showed that 
metabolism of the drug was not altered. Similarly, when F9 
teratocarcinoma cells were treated with both liposomal and 
free ATRA, liposomal ATRA was metabolized at a slower rate 
than non-liposomal ATRA [150]. These results demonstrated 
that encapsulation of ATRA in liposomes and I.V. administration 
generate a better pharmacokinetic profile than oral ATRA by 
circumventing the hepatic metabolism of ATRA. In addition to 
bypassing the hepatic clearance, liposomal ATRA was shown 
to distribute in the skin to a lesser extent, which may contribute 
to maintaining steady and higher ATRA concentrations in the 
plasma [149].

Evaluation of liposomal ATRA in a phase I trial in patients 
with refractory hematological malignancies showed that in 
contrast to the decline in plasma AUC (area under the 
concentration time curve) of ATRA seen 3 to 4 days after 
initiation of oral ATRA, there were no differences between the 
AUC on day 1 and day 15 following liposomal ATRA treatment 
[151]. In the same study, liposomal ATRA was shown to be 
safe, and toxicity profiles were similar to those of oral ATRA, 
although liposomal ATRA produced much higher AUC. I.V. 
administration of liposomal ATRA (90 mg/m2) monotherapy 
was shown to be effective in newly diagnosed APL patients, 
inducing polymerase chain reaction (PCR)-negative molecular 
CRs in a high proportion of patients [139,153]. These studies 
supported the hypothesis that I.V. liposomal administration 
may improve ATRA activity by altering its pharmacological 
profile, remaining elevated following extended treatment and 
providing a basis for long-term therapy in APL.

2. Arsenic trioxide (As2O3): Arsenic compounds, which 
have been used for more than 500 years in traditional Chinese 
medicine, have been shown to be highly effective in the 
treatment of APL. Arsenic alone induces CRs in about 90% of 
APL patients with t(15,17) [154,155]. More importantly, arsenic 
induces CRs not only in de novo APL patients but also in 
patients with relapses after ATRA/chemotherapy who have 
become resistant to these drugs [154-158]. Recently, arsenic 
trioxide was approved by the Food and Drug Administration 
(FDA) for APL patients who relapsed or failed to respond to 
standard therapy. Although arsenic is extremely effective 
especially in ATRA-resistant APL patients, its moderate toxic 
effects need to be further investigated.

In vitro and in vivo studies showed that arsenic triggers 
apoptosis at high concentrations (0.5-2.0 μM) and induces 
differentiation at low concentrations (0.1-0.5 μM) in APL cells 
[159,160]. No cross-resistance has been observed between 
ATRA and arsenic. Arsenic induces degradation of PML-RARα 
and endogenous PML and enhances acetylation of histones 
[160,161]. Arsenic- induced apoptosis might be mediated by 
down regulation of Bcl-2 and upregulation of death associated 
protein (DAP5/p86) that leads to activation of caspase 1 and 3 
and PDCD4 [162-164] Arsenic has been effective in t(11,17) 
type APL expressing PLZF-RARα in a mouse model. Studies 
suggested that the mechanism of effect of As2O3 on PML is 
different from that of ATRA. As2O3 shows antitumoral activity in 
APL cells that do not harbor t(15;17), a variety of hematologic 
cancer cell lines including chronic myeloid leukemia (CML) (that 
is resistant to other agents), multiple myeloma, lymphoma, 
chronic lymphocytic leukemia (CLL), acute lymphoblastic 
leukemia (ALL), and megakaryocytic leukemia.

A recent trial using I.V. arsenic in patients with relapsed or 
refractory APL showed that 70% of patients achieved molecular 
remission and most of them stayed disease free CR in the 
16-month follow-up [155]. Although toxicity and serious side 
effects of arsenic were reported in the same study, these effects 
were not permanent and did not cause interruption of therapy. 
Another study reported that the CR rate induced by arsenic was 
90% in APL patients who relapsed after ATRA-based therapy 
[154]. More importantly, recent clinical studies suggested that 
combination therapy (ATRA and As2O3) was more effective at 
prolonging survival than either drug alone, suggesting that 
combination of ATRA and As2O3 acts synergistically [162]. 

3. Histone deacylase inhibitors: Induction of differentiation 
of ATRA-resistant APL with PLZF-RARα, using combination of 
pharmacological dose of ATRA and HDAC inhibitors (TSA or 
sodium phenylbutyrate) opened a new avenue in the treatment 
of not only APL but also AML1-ETO AML [36]. Although 
butyrate was the first identified HDAC inhibitor, it is not specific 
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Figure 7.  A. Physiological levels of ATRA inhibits nuclear repressor com-
plex activity in normal blasts.
B. Pharmacological levels of ATRA dissociates nuclear repressor complex 
from RAR in APL with PML-RARα



for HDAC [165]. Trichostatin A and trapoxin are more specific 
and potent HDAC inhibitors [165,166]. The major problem 
regarding the use of these non-specific HDAC inhibitors might 
be side effects because of changing chromatin structure in 
cells other than leukemia.

4. Others
Am-80, a synthetic retinoid, has been successful in 

relapsed APL patients previously treated with ATRA, inducing 
CR in about 60% of patients [167,168]. However, in addition 
4-HPR [169], 1,25-dihydroxyvitamin D3 [170,171] and K2 in 
combination with ATRA [172] have been shown to be effective 
in ATRA-resistant APL cell lines inducing differentiation. 
Recently, 3-hydroxymethylglutaryl coenzyme A (HMG-CoA) 
reductase inhibitors (statins) were shown to have anti-leukemic 
activity against leukemia cells. Simvastatin was found to be the 
most active statin in the family and induced cytotoxic potency 
against HL-60 cells [173]. Combination of RA and tumor 
necrosis factor can overcome the maturation block in a variety 
of RA-resistant acute PML cells [174], suggesting that 
combination with RA can enhance the potency of the other 
drug or induce additional pathways that cannot be triggered in 
resistant cells by ATRA alone. In collaboration with Dr. Michael 
Danilenko, we demonstrated that combination with rosemary 
extract or its active compound carnosic acid can enhance 
ATRA-induced differentiation effects in NB4 and HL60 and 
resistant APL cells (Dr. Ozpolat-unpublished findings).

Conclusions/Future Prospects

Although the use of ATRA has greatly improved the 
treatment of APL, rapid development of ATRA resistance limits 
its use as a single agent. Therefore, understanding the 
mechanisms involved in acquired ATRA resistance and 
designing new therapeutic strategies would significantly 
improve the rate and long-term maintenance of CR in APL 
patients. Combination of ATRA with chemotherapy is currently 
the mainstay therapy in APL. In conclusion, designing drugs 
with favorable plasma pharmacokinetics and without exhibiting 
resistance and side effects will be the main goal of future 
studies for developing successful therapeutic strategies. New 
strategies based on our understanding of the fate of ATRA in 
patients with APL will facilitate the development of non-toxic 
and effective therapeutic modalities.
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