Post-traumatic superior sagittal sinus thrombosis is rare. The usual presentation is raised intracranial pressure symptoms. We report a case of post-traumatic superior sagittal sinus thrombosis in which the computed tomography (CT) scan revealed depressed fracture of the vertex with parasagittal contusions. Despite surgical elevation of the fracture and repair of the superior sagittal sinus, the patient developed thrombosis of the anterior half of the superior sagittal sinus with bilateral hemorrhagic infarcts in the motor strip. This case is reported for its rarity and to highlight the importance of careful postoperative observation of such patients. In such settings, timely diagnosis and anticoagulant therapy are rewarding.

Key Words: Head injury; sagittal sinus thrombosis; magnetic resonance venogram.

Post-traumatic superior sagittal sinus thrombosis is rare. A depressed skull fracture overlying a major venous sinus in the brain may result in sinus injury and consequent venous thrombosis.[1] Various mechanisms have been postulated.[2] The diagnosis can be overlooked, especially in the setting of concomitant parasagittal contusions, which can lead to a delay in the diagnosis.

We report a case of vertex fracture with parasagittal contusions superimposed by superior sagittal sinus thrombosis.

CASE REPORT

A 20-year-old male reported to our hospital within 2 hours of head injury with a history of weakness of both lower limbs. On examination, there was a lacerated wound at the vertex with underlying depressed fracture. His Glasgow Coma Scale (GCS) score at admission was 13/15. The power in the upper limbs was normal and in the lower limbs was 2/5.

Plain computed tomography (CT) of the head showed a comminuted depressed fracture of the vertex with bilateral mid-parasagittal hyperdensities, which were thought to be hemorrhagic contusions (Fig. 1a, b). Intraoperatively, a 7 cm x 5 cm comminuted depressed fragment of bone at the vertex and a partial tear in the sagittal sinus were seen. The depressed fragments were elevated and the tear was sealed with gelatin foam. The patient was maintained on decongestants, anticonvulsants and antibiotics. The GCS was 13/15, and he continued to have paraparesis, but on the 5th postoperative day, his GCS score dropped to 10/15. Plain CT scan of the head showed an increase in the size of the mid-parasagittal hemorrhagic lesions with perilesional edema (Fig. 2a). We reviewed our diagnosis, and the possibility of superior sagittal sinus thrombosis was considered. Brain magnetic resonance imaging (MRI) revealed non-visualization of the an-
terior half of the superior sagittal sinus with features of hemorrhagic infarcts in bilateral medial motor areas (Fig. 2b, c). Systemic anticoagulation was started with heparin on the 5th postoperative day. Complete blood counts revealed mild leukocytosis. The erythrocyte sedimentation rate (ESR) was raised (15 mm 1st hour). Blood cultures were negative. The patient was monitored with serial coagulograms. By the 3rd postoperative week, the GCS of the patient had improved to 15/15, with no improvement in power. He was discharged on anticoagulants and anti-epileptics. At the 8th-month follow-up, power in the lower limbs had improved to 3-4/5. The brain MRI showed recanalization of the superior sagittal sinus (Fig. 3).

DISCUSSION

The first case of traumatic sagittal sinus thrombosis was reported by Ecker. The incidence of post-traumatic sinus thrombosis is 4% in penetrating head injury. The pathogenesis is: (a) abnormal clotting mechanism, (b) disturbance of blood flow, and (c) endothelial injury. The most common symptoms are altered sensorium, headache and seizures. Plain X-ray lateral view of the skull may reveal a double density of the fractured region. Non-contrast CT scan may reveal hyperdensity of the sinus. This was not seen in our patient as the CT scan was done within 2 hours of injury, which is too early, and the sagittal sinus thrombosis might have supervened later. MR venogram is the gold standard for diagnosis. It shows non-visualization of the sinus. Multi-detector CT venography is another useful modality in the detection of sinus thrombus. Sinus thrombosis may cause increased levels of fibrinogen degradation products in the serum.

Untreated depressed fractures of the vertex have been mentioned for their delayed presentation of severe raised intracranial pressure features. Interestingly, even a delayed effort of surgical debridement and subsequent release of the compression on the sagittal sinus has been rewarding. However, this entire scenario has been reported thus far in fractures of the vertex causing direct mechanical obstruction of the sinus without inducing sagittal sinus thrombosis.
Once thrombosis has occurred, the recovery may not be dramatically fast.15,16 Our case deviated slightly from the historical examples. Our patient was hit on the vertex by a stone, and the CT scan done within 2 hours of injury revealed bilateral mid-parasagittal contusions in addition to vertex fracture. Most such fractures, which have been managed conservatively in the past for fear of exsanguination during surgery, ultimately had to be treated surgically to alleviate the symptoms of raised intracranial pressure;12,13,17 thus, we decided to surgically address the fracture without resorting to the conservative management. Surgery was done within 4 hours of injury. The wound was relatively clean and all the bone fragments were removed. However, even then, the patient developed sinus thrombosis possibly because of the endothelial injury to the sinus walls. Various methods to deal with the tear in the sagittal sinus have been mentioned, namely: temporalis muscle and fascia graft, direct repair, saphenous vein graft, and silicone tube interposition.18-20 In view of the small tear in the sinus of our patient, we could manage it successfully using a gelatin sponge as a sealant. Post-infectious superior sagittal sinus thrombosis can also occur; however, in our case, the wound was relatively clean. Different modalities of treatment have been outlined for the treatment of sinus thrombosis, namely: stents, catheter delivery of thrombolytic agents, and systemic heparin. Urokinase has been infused into the sinus via a jugular catheter combined with mechanical thrombus disruption or removal with a balloon catheter in patients with superior sagittal sinus thrombosis.21,22 Stent angioplasty for the thrombotic stenosed sagittal sinus has also been tried.22 In our case, we started heparin on the 5th postoperative day when the patient deteriorated, and the imaging performed revealed sagittal sinus thrombosis. In the past, the role of heparin in post-traumatic sagittal sinus thrombosis was thought to be hazardous, in view of concomitant hemorrhagic lesions, which may worsen after heparin therapy; however, recent literature supports its use as it inhibits the extension of the thrombosis into adjoining sinuses and cortical veins.8,24 and a MR venogram, especially in the late phase, usually shows restoration of the patency of the sinus in the follow-up.

In conclusion, even after prompt surgical elevation of depressed fractures of the vertex, possibility of a delayed superior sagittal sinus thrombosis should always be considered.

Conflict-of-interest issues regarding the authorship or article: None declared.

REFERENCES

9.