Cerebral infarction caused by traumatic carotid artery dissection

Travmatik karotid arter diseksiyonuna bağlı serebral enfarktüs

Ayşegül BAYIR,¹ Demet AYDOĞDU KIREŞİ,² Ali SÖYLEMEZ,³ Osman DEMİRCİ⁴

Key Words: Doppler ultrasonography; internal carotid artery; magnetic resonance angiography; traumatic dissection.

The incidence of internal carotid artery dissection (ICAD) caused by blunt trauma is unknown, since the onset of symptoms and signs are frequently delayed,¹ but it has been reported to be 0.08%.²³²⁴ Traumatic ICAD is often accompanied by thrombosis, resulting in permanent neurological deficits and carrying a mortality rate of up to 40%²³⁴. In this case report, we present a patient whose ICAD was diagnosed one week after being involved in a motorcycle accident and hospitalized at an outlying hospital.
CASE REPORT

A 21-year-old female motorcycle passenger was involved in a motor vehicle accident and was brought to the emergency service of a rural government hospital. She was comatose on presentation, and was found to have left radius-ulna fractures on plain films and cerebral edema on non-contrast head computerized tomography (CT) scan. In the neurosurgical intensive care unit (ICU), as she regained consciousness over the next few days, weakness of her left arm and leg was noted. A repeat head CT showed a hypodense infarct in the right frontoparietal and basal ganglion areas (Fig. 1a). With a diagnosis of ‘acute embolic stroke’, she was transferred to our tertiary care university hospital emergency department.

Upon arrival, she was conscious and cooperative with complaints of left hemiparesis. Her vital signs were blood pressure (BP) 120/70 mmHg, pulse rate 72/min, respiratory rate 18/min and temperature 36.8°C. Her pupillary exam was normal and her Glasgow Coma Score was 13. Motor strength was 1/5 in the left upper extremity and 1/5 in the lower extremity. Her left Babinski reflex was positive. Given her clinical picture of posttraumatic stroke, carotid artery injury was suspected.

Diffusion magnetic resonance imaging (MRI) of the brain demonstrated decreased diffusion in the ADC map area, compatible with a large acute infarct and mainly diffusion in the frontal-temporal and parietal zone of the right cerebral hemisphere (Fig. 1b). On T2 axial MR images, loss of flow in the right ICA was observed at the level of the cavernous sinus on the right. Signal alterations consistent with acute infarct were seen in the right frontal, temporal and parietal lobes, including the basal ganglia. The right carotid superior was filled to the Circle of Willis, and subacute hematoma and right ICAD at the level of the inferior pars petrosa were seen (Figs. 1c, d). On MR angiography, no flow of contrast was seen in the right ICA and carotid bulbus superior, or in the middle portion of the right ICA (Figs. 1e, f). Carotid Doppler ultrasoundography showed dissection of the right ICA and a thrombus causing total occlusion beginning at the bifurcation (Figs. 1g, h).

The patient was hospitalized for treatment and follow-up. Since permanent neurological damage had developed and the infarct area was large, anticoagulation was not performed due to concerns that such treatment might trigger hemorrhage in the ischemic infarct area. The patient was discharged with follow-up in the neurology and physical medicine and rehabilitation clinics. The patient’s neurological symptoms and signs (permanent left hemiplegia) were unchanged during three months of follow-up.

DISCUSSION

Traumatic ICAD is a rare and serious cause of embolic stroke in the younger age group. The basic pathophysiological mechanism is stretching of the artery through rotation-hyperextension or distraction-flexion. While only 10% of cases have an immediate onset of symptoms, in most patients, clinical signs of the dissection occur within the first 24 hours following the traumatic event. No symptoms occur within the first 24 hours after trauma in 35% of cases. In patients with traumatic ICAD who exhibit neurologic deficits, brain CT performed within the first 24 hours is usually non-diagnostic.

Traumatic ICAD is usually suspected and diagnosed when a neurological deficit develops unexpectedly after trauma, evolving clinically into a ‘stroke’ in 80% of the cases during the first week after symptom onset. In addition to a detailed history and careful physical examination, duplex carotid ultrasound, CT, CT angiography, MRI, MR angiography, and conventional angiography are imaging studies that can be performed to diagnose traumatic ICAD.

The present case was referred to us with a diagnosis of acute embolic stroke although she had no signs of ischemia on her CT performed at the first hospital. A comprehensive neurologic exam could not be performed secondary to her depressed level of consciousness. In light of the patient’s young age and history of trauma, we suspected traumatic ICAD when we viewed her CT and found corresponding neurologic deficits. To make the definitive diagnosis in our patient, we performed brain MRI, diffusion MRI, carotid Doppler ultrasound, and MR angiography.

Traumatic CAD is divided into five grades according to angiographic findings, and therapy is undertaken accordingly: Grade I: with ≤25% narrowing of the lumen, luminal disruption or dissection; Grade II: >25% narrowing of the lumen, together with dissection or intramural hematoma, intraluminal thrombus or split flap, Grade III: pseudoaneurysm, Grade IV: complete occlusion, and Grade V: signs of transection with contrast extravasation. Grade I traumatic ICAD is treated conservatively with anticoagulants, as only 7% will progress to a higher grade. However, 70% of Grade II dissections rapidly progress to pseudoaneurysm formation and occlusion, and thus require aggressive surgical treatment.

With the latest improvements in endovascular stenting, successful results have been obtained in Grade I and Grade II ICADs. Grade IV dissections are usually complicated by cerebral embolism and stroke. Recanalization procedures in Grade IV traumatic ICAD are associated with a high rate of complications, thus observation and/or anticoagulation is advised. Grade
V ICAD requires urgent surgical ligation and hemorrhage control.[5]

Our patient had a Grade IV ICAD, as diagnosed by MR angiography. The delay in diagnosis at the outlying hospital may have led to the development of permanent neurologic deficits. MR angiography revealed that the dissected superior carotid artery was filled with Willis Polygon.

Traumatic ICAD is a rare occurrence and its diagnosis can easily be missed or delayed despite advances in imaging procedures. Obtaining a detailed history and performing a comprehensive examination

\textbf{Fig. 1.} (a) Non-contrast CT performed at 7 days in our 23-year-old motorcycle accident victim. A hypodense lesion in the right frontoparietal and basal ganglion area, suggestive of ischemia, can be seen. (b, c) Diffusion-weighted MRI in the right frontotemporal and parietal lobes, suggesting an acute infarct in the ADC map. (d) T2 contrast MRI showing loss of the flow of the internal carotid artery at the level of the cavernous sinus on the right. (e, f) Contrast MR angiogram showing cut-off of flow in the internal carotid artery at the level of the carotid bulb. Flow is also absent in the right middle cerebral artery. Longitudinal (g) and transverse (h) Doppler ultrasound images of the right internal carotid artery just superior to the carotid bulb showing a linear echogenic band (white arrow) in the lumen, compatible with dissection.
will lead the clinician to suspect ICAD in the setting of post-traumatic unilateral neurologic abnormalities with a normal or near-normal non-contrast CT. Carotid Doppler is an easily performed study that can rule out the presence of ICAD in suspicious cases. Advances in CT and MR angiography techniques and machines have made it possible to establish a rapid and accurate diagnosis. After an accurate diagnosis has been made, immediate treatment to reduce complications and optimize outcome should be performed.

REFERENCES