Scleredema-associated IgA myeloma with myelofibrosis in a young adult: a case report

Seema Rao, Rakhee Kar, Hara Prasad Pati, Renu Saxena
Department of Hematology, AIIMS, New Delhi, India

Abstract
Scleredema of Buschke is a rare fibromucinous connective tissue disorder of unknown etiology. It is often associated with a benign monoclonal gammopathy and rarely with myelomatosis. We report a case of scleredema-associated IgA myeloma with myelofibrosis in a 24-year-old male patient. Scleredema generally affects young adults and onset of associated monoclonal gammopathy is at a younger age than when not associated with scleredema. However, presentation at a much younger age (24 years in our case) is very unusual. Although mucin deposition in the bone marrow has been reported in scleredema, to the best of our knowledge, myelofibrosis has not been reported. (Turk J Hematol 2008; 25: 195-7)

Key words: Scleredema, myeloma, myelofibrosis, IgA-kappa.

Introduction
Scleredema of Buschke or scleredema adultorum is a rare primary cutaneous fibromucinous of unknown etiology that is characterized by extensive woody, non-pitting induration of skin throughout the body, with systemic involvement being rather uncommon. There is a known association with benign monoclonal gammopathy and less commonly with frank myelomas [1,2]. The disease runs a variable course and is usually self-limiting; however, a few fatal cases have been reported [3].
Case Report

A 24-year-old male presented with an eight-year history of progressive diffuse cutaneous thickening, which initially started from the face and slowly progressed over time to involve the trunk, arms and thighs. Hands and feet were relatively spared. He had difficulty in swallowing and walking. There was no preceding history of diabetes, infection or trauma. There was no history of Raynaud’s phenomenon. On examination, he had diffuse induration of skin on face, trunk, arms and legs, and consistent pressure demonstrated a brawny edema. The face was woody and expressionless (Figure 1) and diffuse thickening of the tongue was noticed. There was limitation of neck, arms and feet movements. The spine showed kyphotic deformity.

On investigation, the patient had anemia (Hb 105 g/L) with normal total leukocyte and platelet counts, and erythrocyte sedimentation rate (ESR) of 55 mm in the first hour. Peripheral smear showed rouleaux formation. However, no leukoerythroblastic picture or tear-drop poikilocytes were seen. Blood urea, electrolytes, blood glucose level, liver function test, thyroid function test, rheumatoid factor and antinuclear antibody tests were normal. Serum protein electrophoresis showed an abnormal M band (25.5%, 1.8 g/dl) in the β-γ interzone, which on immunofixation was identified as a monoclonal IgA-kappa protein. Total serum protein levels were 7.9 g/dl. Serum β2 microglobulin level was 5500 μg/L (normal: 700-3400 μg/L). Polyclonal γ globulins were reduced. Urine was negative for Bence Jones protein, and urine protein electrophoresis did not reveal any M band. Twenty-four hour urine albumin was 0.02 g/day. Chest X-ray and skeletal survey revealed diffuse osteoporosis of the spine and bilateral phalanges.

Pathological findings

A skin biopsy from the left shoulder showed normal epidermis and increased broad fibrous bands in the deep dermis. However, Alcian blue stain for any mucin deposition in the skin was negative. Congo red staining for amyloidosis was negative. A bone marrow aspirate from the iliac crest showed 55% plasma cells including immature forms (Figure 2). The bone marrow biopsy showed loose, edematous stroma with interstitial as well as focal increase in plasma cells. There were areas of increased fibrosis with presence of coarse reticulin fibers (reticulin grade 3) (Figure 3). The Alcian blue stain for any mucin deposition was negative. Focally, the bony trabeculae showed areas of new bone formation (Figure 4). Hence, the patient was diagnosed as scleredema-associated IgA multiple myeloma with myelofibrosis and started on thalidomide, dexamethasone and zoledronic acid.

Discussion

Scleredema was first described by Buschke in 1902 as a systemic disease with woody, non-pitting induration of the skin starting at the nape of the neck and gradually spreading throughout the body, sparing the palms and soles [4]. It usually affects young adults with slight female predominance. The disease has been divided into two main types. The first is a self-limiting form often occurring after an acute febrile episode and resolving spontaneously within a few months [4]. The second
type is associated with diabetes mellitus and runs a prolonged
course [5]. There have been many reports of an association with
a monoclonal gammopathy [6,7]. Rarely, there have been cases
of scleredema associated with multiple myeloma [1,2]. In such
cases, the scleredema presents several years before the mono-
clonal gammopathy [7].

Various hypotheses have been proposed to explain the
association of scleredema with monoclonal gammopathy. Accord-
ing to Kovary et al. [8], the presence of immunoglobulins
reflects a state of chronic immunostimulation due to antigenic
substances present in the connective tissue. Another possibility
is that the scleredema is caused by the monoclonal gammopa-
thy, as the serum from the affected patient has been shown to
stimulate collagen synthesis in normal skin fibroblast cultures [6];
however, any clear evidence is lacking. It is also possible that the
gammopathy and scleredema are caused by the same etiologi-

cal factor, which is hitherto unknown.

Mild marrow fibrosis may be observed in at least 27% of
cases of myeloma but extensive fibrosis is rare [9,10]. Although
mucin deposition [11] in the bone marrow has been reported in
scleredema, to the best of our knowledge, myelofibrosis has not
been reported. Whether the myelofibrosis was part of the pri-
mary disease process itself, reflecting extracutaneous systemic
involvement, or whether it was secondary to myeloma is difficult
to discriminate, since mucin can be absent in late lesions of scler-
dema, which show only fibrosis.

A variety of treatment approaches have been tried with vari-
able success rates, including corticosteroids, immnosuppress-
sants, thyroid hormones, antifibrotic therapy, hyaluronidase and
electron beam therapy. The myeloma chemotherapy usually
results in pronounced improvement of the associated sclerede-
ma [1,2,6]. Our patient also showed an improvement in the tex-
ture of the skin and generalized well-being after receiving
chemotherapy, but he has not yet been evaluated with follow-up
serum immunoglobulin levels or a repeat bone marrow biopsy.
He was discharged after the first cycle of chemotherapy and is on
regular follow-up.

References
1. Salisbury JA, Shallcross H, Leigh IM. Scleredema of Buschke asso-
adultorum associated with IgG-kappa multiple myelo-
5. McNaughton F, Keczkes K. Scleredema adultorum and diabetes
6. Ohta A, Utto J, Oikarinen AI, Palatsi R, Mitrane M, Bancila EA,
Seibold JR, Kim HC. Paraproteinemia in patients with scleredema.
Clinical findings and serum effects on skin fibroblasts in vitro. J Am
Electron-beam therapy in scleredema adultorum with associated
monoclonal hypergammaglobulinemia. Br J Dermatol
1994;130:394-7.
8. Kovary PM, Vakilzadeh F, Macher E, Zauf H, Merk H, Goerz G. Monoclonal
gammopathy in scleredema. Observation in three
L, Nielsen JL, Heickendorff L. Bone marrow fibrosis and disease
activity in multiple myeloma monitored by amino terminal propep-
10. Krzyzaniak RL, Buss DH, Cooper MR, Wells HB. Marrow fibrosis
11. Basarab T, Burrows NP, Munn SE, Russel Jones R. Systemic
involvement in scleredema of Buschke associated with IgG-kappa