Cardioprotective Effects of Remifentanil in a Sympathetic Hyperactivity Model in Rabbits

Selen Bayındır¹, Necati Gökmen¹, Serhat Erbayraktar², Semih Küçükgüçlü¹, Osman Yılmaz³, Ömer Şahin¹, Elvan Öçmen¹, Hale Aksu Erdost¹, Emel Sağiroğlu¹

¹Department of Anaesthesiology, Dokuz Eylül University Faculty of Medicine, Izmir, Turkey
²Department of Neurosurgery, Dokuz Eylül University Faculty of Medicine, Izmir, Turkey
³Department of Animal Research Center, Dokuz Eylül University Faculty of Medicine, Izmir, Turkey

Abstract

Objective: In this study, the antiarrhythmic and anti-ischemic effects of a 6 µg kg⁻¹ min⁻¹ infusion dose of remifentanil are investigated in a central sympathetic hyperactivity model in rabbits.

Methods: In this study, 18 New Zealand rabbits were used. The subjects were randomly divided into three groups (n=6) and received 10 µmol L⁻¹ glutamate intracerebroventricularly to provide the central sympathetic hyperactivity. In group 1, 10 µmol L⁻¹ glutamate was used; in group 2, 1 h before L-glutamate injection, 40 mg kg⁻¹ N (omega)-nitro-L-arginine methyl ester was intravenously (iv) administered; and in group 3, also 1 h before L-glutamate injection, 40 mg kg⁻¹ N (omega)-nitro-L-arginine methyl ester was iv administered. A 6 µg kg⁻¹ min⁻¹ dose of remifentanil infusion was administered 5 min before L-glutamate injection. Heart rate, systolic arterial pressure and mean arterial pressure were measured and recorded. Within 15 min of the intracerebroventricular L-glutamate injection, premature ventricular complexes, bigeminy ventricular arrhythmia, ventricular tachycardia, ST-segment shift and T-wave inversions were recorded.

Results: When incidences of heart rate, rate pressure product, premature ventricular complexes and bigeminy ventricular arrhythmia were compared between groups, significant differences were not determined. Mean arterial pressure was more significantly increased in group 2 than in the other groups (p<0.05). Ventricular tachycardia, ST-segment shift and T-wave inversions were significantly lower in group 3 than in groups 1 and 2 (p<0.05).

Conclusion: Remifentanil (6 µg kg⁻¹ min⁻¹ for 5 min of infusion) prevented life-threatening ventricular tachycardia and electrocardiographic signs of myocardial ischemia in a model of arrhythmia resulting from the association of central sympathetic overactivity.

Keywords: Central sympathetic hyperactivity, myocardial ischemia, opioids, ventricular arrhythmia

Introduction

It has been claimed that increased sympathetic activity is potentially harmful for myocardial ischemia developed on the basis of hypertension, heart failure and arrhythmogenesis; its reversal has also been shown to be beneficial against acute myocardial ischemia in animal studies (1, 2).

The myocardium has delta and kappa types of opioid receptors (3). Both delta (particularly delta-1 subtype) (4, 5) and kappa (6, 7) opioid receptor types have been found to be responsible for the cardioprotective effects of opioids. Like morphine, fentanyl, a synthetic opioid, has cardioprotective effects in ventricular ischemia models by activating delta opioid receptors (8, 9). The protective effects of opioid agonists through the kappa and delta opioid receptors have already been attributed in experimental studies (10-12).

Remifentanil is a novel, ultra-short acting and potent phenylpiperidine opioid analgesic agent and is metabolized rapidly by blood and tissue esterases (12). It has an analgesic potency that is similar to fentanyl and is 100 times greater than morphine (13). Remifentanil has a high selectivity for mu (EC₅₀=2.6 nm) and low affinity for delta (EC₅₀=66 nm) and kappa (EC₅₀=6.1 nm) opioid receptors (14). In left ventricular ischemia-induced rats, pretreatment with remifentanil has led to a
dose-dependent reduction of infarct size; the administration of mu, delta or kappa receptor antagonists decreased or even prevented these effects (12).

The aim of the present study was to investigate the antiarrhythmic and anti-ischemic effects of remifentanil in an experimental rabbit model of sympathetic over activity.

Methods

In this study, 18 New Zealand albino rabbits weighing 2–2.5 kg were used. Animals were housed under controlled standard conditions in the Animal Research Laboratory at the Dokuz Eylül University. The study protocol was approved by the Animal Research Committee of the Dokuz Eylül University.

The marginal vein of the right ear was cannulated, and an infusion of 0.9% NaCl solution was started at a rate of 4 mL kg⁻¹ h⁻¹. The induction of anaesthesia was performed with sodium thiopental (40 mg kg⁻¹), and a continuous intravenous infusion of 15 mg kg⁻¹ h⁻¹ of sodium thiopental was used for the maintenance of anaesthesia. After induction of anaesthesia, a tracheotomy was performed using an intubation tube (Portex, Portex Ltd, Hythe Kent, England), with an inner diameter of 3 mm. Then, they were artificially ventilated with 100% oxygen by an animal ventilator (Kent Scientific, Norfolk, CT, USA) at a rate of 25 breaths per minute, and tidal volume of 10 mL kg⁻¹ neuromuscular blockade was induced with 0.1 µg kg⁻¹ vecuronium bromide. The end-tidal carbon dioxide level was monitored (Anesthesia Gas Monitoring 1304, Bruek Kjaer, Copenhagen, Denmark) and maintained between 36 and 42 mmHg. Paediatric electrocardiograph electrodes were attached to both lower and right upper extremities and the lead II electrocardiogram (ECG) was continuously recorded (Biopac MP 30 and Biopac BSL prov.3.6.5, Biopac Systems, Santa Barbara, CA, USA) and stored on a hard disc for 15 min following L-glutamate injection. After rectal probe monitorization, central temperature was maintained at 37°C±0.5°C with a servo-controlled lamp. The right femoral vein was catheterized with a 22 G cannula for intravenous (IV) injections. Arterial pressure was continuously monitored through a 20 G cannula via the right femoral artery with a connecting transducer (Pressure Monitoring Set, Bıçakçılar, İstanbul, Turkey) to a monitor (Petas KMA 250, Petas Ltd, Ankara, Turkey). Arterial blood gas analysis (Stat Profil M, Nova Biomedical Ltd., USA) was also performed at the start, 30 min after either N (Omega)-nitro-L arginine methyl ester (L-NAME) or saline administration, and after completion of either remifentanil or saline.

Premature ventricular complexes (PVCs) occurred during the 15 min immediately after ICV L-glutamate injection was recorded. A PVC following each normal beat was considered a bigeminy ventricular arrhythmia. Ventricular tachycardia (VT) was determined to consist of a run of at least five ectopic PVC complexes. As a semi-quantitative indicator of myocardial ischemia, ST-segment shifts of more than 0.1 mV as well as symmetrical T-wave inversions were used.

Measurements were made of heart rate (HR), systolic arterial pressure (SAP) and mean arterial pressure (MAP). The “rate pressure product” (RPP) was calculated by multiplying the HR by the systolic blood pressure and dividing by 1000 to reduce it into convenient units. For each group, all of these measurements were performed by noting the highest value recorded at the beginning, 5 min after L-NAME or saline infusion, 5 min after the completion of remifentanil infusion and 15 min after L-glutamate injection.

At the end of each experiment, 100 µL of methylene blue dye was injected ICV using the same co-ordinates. The brain was removed after the animal was sacrificed by IV administered 120 mg kg⁻¹ sodium thiopental to check whether the dye had diffused properly throughout the ventricular space.
Statistical analysis

Statistical analysis was performed using the Statistical Package for the Social Sciences (SPSS Inc., Chicago, IL, USA) for Windows version 11.0. Results are presented as means±standard deviation. All variables were analyzed by using the Kruskal–Wallis test, and when indicated, followed by the Mann–Whitney U test. Within comparisons were performed using the Friedman test, and when indicated, followed by the Wilcoxon test. A p value less than 0.05 was considered significant.

Results

Animals in groups 1, 2 and 3 weighed 2183±194 g, 2267±206 g and 2100±200 g, respectively.

No significant difference was observed either within or between comparisons of body weight, rectal temperature, pH, PaO2 and PaCO2 values (Table 1).

There was no significant difference during between comparisons in HR (Table 1). In group 1, the maximum HR recorded following L-glutamate injection was found to be higher than other measurements (p<0.05). In group 2, HR recorded 5 min after L-NAME administration was significantly lower than the basal value (p=0.04). In addition, HR measured immediately after L-glutamate injection was significantly higher than the other measurements in group 2 (p<0.05). On the other hand, the group 3 basal HR was higher than that measured after L-NAME, remifentanil and L-glutamate administrations (p<0.05) (Table 1).

During between comparisons, MAP measurements were recorded 5 min after either L-NAME or saline or remifentanil infusions (Table 1). Within group comparisons revealed that MAP recorded after L-glutamate injection was significantly higher than the other measurements in groups 2 and 3. In group 3, MAP recorded after remifentanil infusion was lower than those recorded following L-NAME infusion (p<0.05) (Table 1).

There was no significant difference between the groups for RPP (Table 1). In groups 2 and 3, RPP measured after L-glutamate injection was higher than the other measurements (p<0.05) (Table 1).

The PVC incidence was 16.7% (1/6) in group 1, 66.7% (4/6) in group 2 and 16.7% (1/6) in group 3; it did not change significantly according to the treatment (p>0.05).

The ventricular bigeminy incidence was 16.7% (1/6) in group 1, 66.7% (4/6) in group 2 and 16.7% (1/6) in group 3; it did not change significantly with the treatment (p>0.05).

The VT incidence was 0% (0/6) in group 1, 66.7% (4/6) in group 2 and 0% (0/6) in group 3 respectively; it was markedly reduced by the treatment (p<0.05) (Figure 2).

Table 1. Haemodynamic and arterial blood gas variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group 1 (n=6)</th>
<th>Group 2 (n=6)</th>
<th>Group 3 (n=6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR (beat min⁻¹)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basal</td>
<td>259±29</td>
<td>266±54</td>
<td>283±44</td>
</tr>
<tr>
<td>L-NAME or saline</td>
<td>262±24</td>
<td>240±61</td>
<td>251±33</td>
</tr>
<tr>
<td>Remifentanil or saline</td>
<td>248±37</td>
<td>249±63</td>
<td>244±33</td>
</tr>
<tr>
<td>L-glutamate injection</td>
<td>291±47</td>
<td>298±59</td>
<td>248±38</td>
</tr>
<tr>
<td>MAP mmHg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basal</td>
<td>88±14</td>
<td>91±3</td>
<td>77±19</td>
</tr>
<tr>
<td>L-NAME or saline</td>
<td>88±12</td>
<td>118±10</td>
<td>93±32</td>
</tr>
<tr>
<td>Remifentanil or saline</td>
<td>94±14</td>
<td>119±12</td>
<td>82±30</td>
</tr>
<tr>
<td>L-glutamate injection</td>
<td>114±18</td>
<td>160±19</td>
<td>136±29</td>
</tr>
<tr>
<td>RPP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basal</td>
<td>29±8</td>
<td>31±8</td>
<td>28±9</td>
</tr>
<tr>
<td>L-NAME or saline</td>
<td>29±7</td>
<td>36±12</td>
<td>28±10</td>
</tr>
<tr>
<td>Remifentanil or saline</td>
<td>29±6</td>
<td>37±10</td>
<td>24±7</td>
</tr>
<tr>
<td>L-glutamate injection</td>
<td>41±11</td>
<td>57±19</td>
<td>38±7</td>
</tr>
<tr>
<td>Temperature °C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basal</td>
<td>37±0.09</td>
<td>37±0.08</td>
<td>37±0.08</td>
</tr>
<tr>
<td>L-NAME or saline</td>
<td>37±0.07</td>
<td>37±0.09</td>
<td>37±0.05</td>
</tr>
<tr>
<td>Remifentanil or saline</td>
<td>37±0.05</td>
<td>37±0.08</td>
<td>37±0.04</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basal</td>
<td>7.41±0.08</td>
<td>7.35±0.07</td>
<td>7.34±0.08</td>
</tr>
<tr>
<td>L-NAME or saline</td>
<td>7.42±0.06</td>
<td>7.37±0.08</td>
<td>7.42±0.07</td>
</tr>
<tr>
<td>Remifentanil or saline</td>
<td>7.39±0.07</td>
<td>7.36±0.09</td>
<td>7.43±0.09</td>
</tr>
<tr>
<td>PaO2 mmHg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basal</td>
<td>217±53</td>
<td>188±45</td>
<td>253±58</td>
</tr>
<tr>
<td>L-NAME or saline</td>
<td>198±45</td>
<td>195±33</td>
<td>255±49</td>
</tr>
<tr>
<td>Remifentanil or saline</td>
<td>226±67</td>
<td>197±40</td>
<td>275±57</td>
</tr>
<tr>
<td>PaCO2 mmHg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basal</td>
<td>40±6</td>
<td>36±9</td>
<td>41±6</td>
</tr>
<tr>
<td>L-NAME or saline</td>
<td>38±5</td>
<td>38±7</td>
<td>36±4</td>
</tr>
<tr>
<td>Remifentanil or saline</td>
<td>36±7</td>
<td>36±7</td>
<td>35±5</td>
</tr>
</tbody>
</table>

Values are means±SD.
HR: heart rate; MAP: mean arterial pressure; RPP: rate pressure product; PaO2: partial arterial oxygen pressure; PaCO2: partial arterial carbondioxide pressure
* p<0.05: Significantly different during within comparisons.
* p<0.05: Significantly different during within comparisons of post L-glutamate measurements.
p<0.05: Significantly different from basal measurements during within comparisons with those of post L-NAME or saline.
* p<0.05: Significantly different during within comparisons of saline or remifentanil with L-NAME or saline.
The T-wave inversion incidence was 0% (0/6) in group 1, 66.7% (4/6) in group 2 and 0% (0/6) in group 3; it was markedly reduced by the treatment (p<0.05) (Figure 3).

The ST-segment shift incidence was 16.7% (1/6) in group 1, 66.7% (4/6) in group 2 and 0% (0/6) in group 3; it was significantly reduced by the treatment (p<0.05) (Figure 4).

At the end of each experiment, 100 µL of methylene blue dye was injected ICV using the same co-ordinates. In all rabbits, we observed the methylene blue dye in ICV.

Discussion

In the present study, 6 µg kg⁻¹ min⁻¹ of remifentanil was found to reduce the frequency of VT, T-wave inversion and ST-segment changes in the rabbit central sympathetic overactivity model when administered intravenously for 5 min.

Doses of remifentanil were higher than those used in patients because esterase activity is very high in rabbits, and similar effects can only be produced with such doses (15). In addition, Zhang et al. (12) reported that 6 µg kg⁻¹ min⁻¹ of remifentanil was an effective dose in reducing the infarct size in rats.

The central control of human cardiac functions is situated in the paraventricular nuclei of the hypothalamus (16). Administration of the excitatory L-glutamate via ICV injection has been shown to increase cardiac contractility and myocardial oxygen consumption by stimulating the hypothalamus (16). Tibirica et al. (16) found that ICV injection of 3 µg kg⁻¹ of L-glutamate was able to raise MAP and increase myocardial oxygen consumption without inducing myocardial ischemia in rabbits. L-NAME is a type of L-arginine, which is known to competitively inhibit NO synthesis. Catelli et al. (17) reported that L-NAME could cause systemic and coronary vasoconstriction that resulted in hypertension, ventricular arrhythmia (premature ventricular complex), myocardial ischemia (ST-segment changes) and increased mortality. Similarly, Lessa et al. (1) observed increases in ventricular arrhythmia and signs of myocardial ischemia, such as ST-segment changes and T-wave inversion, when ICV L-glutamate and intravenous L-NAME administrations were combined. Moreover, Moreno et al. (18) showed that the acute intravenous administration of L-NAME resulted in extensive myocardial necrosis in rats. Therefore, we decided to combine these drugs to stimulate the central sympathetic system and induce myocardial ischemia in the present study.

One of the major results of our study was the finding that the administration of 40 µg kg⁻¹ of L-NAME in anaesthetized rabbits led to a considerable increase in MAP. Signs of myocardial ischemia, such as ST-segment changes and T-wave inversion, also occurred. This haemodynamic profile suggested that the inhibition of NO synthesis provokes the reduction in coronary blood flow, which causes myocardial dysfunction. Despite of the increase in MAP and myocardial oxygen demand, L-glutamate alone did not evoke signs of myocardial ischemia.
In the present study, HR at the 5th min of L-NAME administration was found to be reduced during within comparisons with the basal measurements. This finding was parallel to those reported by others (1, 17) who used L-NAME at a dose of 40 µg kg⁻¹ and may reflect a baroreceptor response following induced hypertension.

In the present study, remifentanil prevented either the haemodynamic result of this central sympathetic stimulation or ventricular tachycardia and signs of myocardial ischemia. Remifentanil had previously been shown to exhibit a dose-dependent suppression of catecholamine discharges during laparoscopic fundoplication operations (19). In addition, when combined with propofol, remifentanil was found to be able to decrease the stress response in patients undergoing cardiac surgery (20). However, there are reports emphasizing the increased risk of hypotension and bradycardia following bolus injections of remifentanil during coronary artery surgery (21).

The results of our experimental model showed that not only the incidence of myocardial ischemia and ventricular arrhythmia but also the hypertensive attacks due to the activation of the sympathetic nervous system were reduced or even completely abolished in animals that were systematically treated with remifentanil. These findings correlated with the results of some previous clinical studies (22-24). Thus, the cardioprotective effect of remifentanil appears to be relative to direct effects on the nervous system and/or heart. Shinohara et al. (25) demonstrated that the systemic administration of remifentanil induces a central sympathetic inhibitory effect mediated by central opioid receptors.

We determined that, in this experimental model rather than its anti-arrhythmic effect, remifentanil at least exhibited anti-ischemic properties at this dosage. Although it did not decrease the incidence of PVC and bigeminy ventricular arrhythmia, a significant effect was seen with respect to preventing ST-segment changes and T-wave inversion, which are ECG indicators of myocardial ischemia.

The anti-ischemic action of remifentanil was probably related to the direct effects on the heart via activation of the delta and kappa types of opioid receptors (12). In our experimental model, L-NAME-induced myocardial ischemia was aggravated by sympathetic overactivity, and remifentanil was shown to reduce the ensuing increase in myocardial oxygen demand by inhibiting the hypertensive response. As a result, reduced cardiac activity could have led to the occurrence of an anti-ischemic effect. This effect was attributed to the activation of cardiac opioid receptors by remifentanil, which, besides the classical action on mu receptors, is also able to stimulate the delta and kappa receptors (12). However, further investigation is still necessary to explore the anti-ischemic effect of remifentanil that was observed in our experimental model.

Another important finding of the present study was the reduction of MAP by remifentanil. In a number of reports, remifentanil has been shown to reduce HR, arterial blood pressure, cardiac output and systemic vascular resistance (21, 26-28). In addition, it induced systemic arterial vasodilatation without producing any effect on the capacitance vessels in critically ill patients who underwent surgery for artificial heart valve replacement (31). Nevertheless, how remifentanil induced vasodilatation occurs is not yet understood. Ünlügenc et al. (29) reported that remifentanil induced vasodilatation using both endothelium-dependent and -independent mechanisms in vitro. Against the NOS inhibition provided with L-NAME, a decrease in arterial blood pressure due to remifentanil-induced vasodilatation did not indicate the existence of an endothelium-dependent mechanism. Remifentanil has also been shown not to have any effect on preventing the sympathetic activity or the direct mechanisms of vasodilatation due to histamine discharge (28, 31).

Kim et al. (30) published a review article which shows that both morphine and remifentanil demonstrate cardioprotective properties. Both opioid receptors and signalling pathways were shown to be involved in this effect.

Lemoine et al. (31) also studied in vitro human myocardium isometric contraction after hypoxia and administered different remifentanil and sufentanil concentrations; the study demonstrated that both drugs confer cardioprotection.

Conclusion

Remifentanil (6 µg kg⁻¹ min⁻¹ for 5 min) prevented life-threatening ventricular tachycardia and electrocardiographic signs of myocardial ischemia in a model of arrhythmia resulting from the association of central sympathetic overactivity with myocardial ischemia in rabbits.

Ethics Committee Approval: Ethics committee approval was received for this study from the ethics committee of Dokuz Eylül University.

2. Lessa MA, Tibiriça E. Pharmacologic evidence for the involvement of central and peripheral opioid receptors in the cardioprotective effects of fentanyl. Anesth Analg 2006; 103: 815-21. [CrossRef]

4. Schultz JJ, Hsu AK, Gross GJ. Ischemic preconditioning and morphine-induced cardioprotection involve the delta (delta)-opioid receptor in the intact rat heart. J Mol Cell Cardiol 1997; 29: 2187-95. [CrossRef]

5. Schultz JE, Hsu AK, Gross GJ. Ischemic preconditioning in the intact rat heart is mediated by delta1- but not mu- or kappa-opioid receptors. Circulation 1998; 97: 1282-9. [CrossRef]

12. Zhang Y, Irwin MG. Remifentanil preconditioning protects against ischemic injury in the intact rat heart. Anesthesiol 2004; 101: 918-23. [CrossRef]

15. Gardiner SM, Kemp PA, Bennett T, Palmer RM, Moncada S. Regional and cardiac hemodynamic effects of NG-dimethyl-L-arginine and their reversibility by vasodilators in conscious rats. Br J Pharmacol 1993; 110: 1457-64. [CrossRef]

