Presentation to Affirmative Effect of Doxycycline in Pentylene Tetrozole Induced Seizures Models

Doksisiklinin Pentilentetrazol İndükte Nöbetler Üzerine Olan Olumu Etkisinin İncelenmesi

Oytun ERBAŞ, 1 Ayşegül ÖZER ÇELİK, 2 Bilge PİRİ ÇINAR, 3 Volkan SOLMAZ, 4* Dürdane AKSOY 4

1Department of Physiology, Gaziosmanpaşa University Faculty of Medicine, Tokat; 2Department of Neurology, Trabzon Numune State Hospital, Trabzon; 3Department of Neurology, Giresun State Hospital, Giresun; 4Department of Neurology, Gaziosmanpaşa University Faculty of Medicine, Tokat

Summary

Objectives: There were some experimental and clinical evidence that inflammation in the brain is likely to predispose epileptogenesis. Also, it is thought to be that oxidative stress can play a role in epilepsy. Both laboratory and clinical studies have demonstrated the antiflammatory-antioxidant properties of doxycycline. We aimed to highlight the anticonvulsant action of doxycycline based on clinical, laboratory and EEG findings in animal models.

Methods: 36 rats were randomly divided in two groups. Group A for EEG recordings and Group B for behavioral assessment. 35 mg/kg pentylene tetrozole (PTZ) used for EEG recording and 70 mg/kg PTZ used for behavioral evaluations. For behavioral evaluations we assessed first myoclonic jerk time (FMJ) and Racine convulsion scale (RCS).

Results: The groups were evaluated according to EEG records and severity of seizures. It was found to be doxycycline is effective both on the time of the first myoclonic jerk’ (FMJ) latency and Racine convulsion scale (RCS) scores. Besides, doxycycline significantly decreased to the percentage of spikes on electroencephalography (EEG) records. Also in current study, it was detected that Malone dialdehit (MDA) levels decreased and superoxide dismutase (SOD) activity increased in doxycycline-treated groups.

Conclusion: In our study, we evaluated that the anticonvulsant effects of doxycycline showed a dose dependent protective effect against PTZ-induced seizures in rats by its anti-inflammatory and neuroprotective properties.

Key words: Doxycycline; malonedialdehit; pentylenetetrazole; superoxide dismutase.

Özet

Gereç ve Yöntem: Otuz altı sıçan rastgele iki gruba ayrıldı. Grup A EEG kayıtları, Group B ise davranışsal değişikliklerin incelenmesi için belirlendi. 35 mg/kg pentilentetrazol (PTZ) EEG kayıtları için, 70 mg/kg PTZ davranışsal değişiklikler oluşturmak için kullanıldı. davranışsal değişikliklerin değerlendirilmesinde ilk miyoklonik jerk zamanı (FMJ) ve Racine konvulziyon skalası (RCS) kullanıldı.

Bulgular: Yaptığımız istatistiksel analiz sonucunda doksisiklin verilen gruplarda spike yüzdeleri, ilk miyoklonik jerk zamanı ve Racine konvulziyon skalası açısından öne çıktı. Ayrıca çalışmadan doksisiklin verilen grupta malonedialdehit seviyeleri düşmüşken, süperoksit dismutaz seviyelerinin artış olduğu görüldü.

Sonuç: Sunulan çalışmamızda doksisiklinin PTZ induced konvulziyonlar üzerine olumu etkileri teşvik edildi. Ayrıca çalışmamızda doksisiklinin verilen grupta malonedialdehit seviyeleri düşmüşken, süperoksit dismutaz seviyelerinin artış olduğu görüldü.

Anahtar sözcükler: Doksisiklin; malonedialdehit; pentylenetetrazol; süperoksit dismutaz.

*Current affiliation: Turhal State Hospital, Department of Neurology, Tokat.

© 2014 Türk Epilepsi ile Savaş Derneği
© 2014 Turkish Epilepsy Society

Submitted (Geliş): 18.03.2014
Accepted (Kabul): 28.08.2014
Correspondence (İletişim): Volkan SOLMAZ, M.D.
e-mail (e-posta): solmaz.volkan@yahoo.com
Introduction

International League Against Epilepsy (ILAE) defined an epileptic seizure as transient occurrence of signs and/or symptoms due to abnormal excessive or synchronous neuronal activity in the brain. Epilepsy is a disorder of the brain characterized by an enduring predisposition to generate epileptic seizures and by the neurobiologic, cognitive, psychological, and social consequences of this condition.[1] Epileptogenesis refers to a process in which an initial brain-damaging insult triggers a cascade of molecular and cellular changes that eventually lead to the occurrence of spontaneous seizures.[2] Brain inflammation has gained recognition as a crucial contributor to epileptogenesis. Brain inflammation seems to be an intrinsic feature of the diseased hyperexcitable brain tissue where spontaneous and recurrent seizures originate. Following a convulsant challenge or epileptogenic brain injury, cytokines, prostaglandines, and inflammatory molecules together with their receptors are induced in neurons and activated glial cells, as well as in endothelial cells of blood-brain barrier, in the brain region of focal injury. Brain inflammation contributes significantly to determine seizure threshold in susceptible brain regions, thus playing a role in seizure precipitation and their recurrence.[3] Brain inflammation induced by an epileptogenic injury has a rapid onset (<30 min), it can persist for several days thus outlasting the initial precipitating event, and it is inefficiently opposed by endogenous anti-inflammatory mechanisms.[4]

Doxycycline is a long-acting second generation tetracycline-class antibiotic. It can pass to CSF well and exerts its effect in 1–3 hours when it is given orally and in 30 minutes when it is administered intravenously. Its action mechanism is based on the characteristics that tetracyclines inhibit protein synthesis by acting ribosome levels, 16S rRNA.[5] Both some laboratory and clinical studies have demonstrated anti-oxidant properties of doxycycline. Furthermore, it promotes neuronal survival, inhibits microglial activation and reduces reactive gliosis in some animal models.[6,7] According to these information, the aim of our study was to investigate doxycycline’s anti-convulsant effects with EEG records, biochemical findings and clinical (behavioral) assesment.

Materials and Methods

Animal and Laboratory

The experimental procedures employed in present study were approved by Ege University Animal Ethics Comittee. All experiments were carried out according to the Guide for the Care and Use of Laboratory Animals, as confirmed by National Institutes of Health (U.S.) 36 male (18 of them for EEG recording and 18 of them are for behavioral studies) Sprague–Dawley rats, weighing 200–250 g each were utilized for this study. The rats were kept on a 12 hour –12 hour light–dark cycle (light from 07.00 to 19.00), in quiet rooms, with 22–24 °C ambient temperature. They were fed by standard laboratory food and tap water ad libitum.

Experimental procedures

36 rats were randomly divided in two groups: Group A for EEG recordings and Group B for behavioral assesment. In Group A; Rats were deeply anesthetized. Then, a small hole was opened with a drill stereotaxically. The electrodes (Polyamide-coated stainless steel wires, 0,1 mm diameter and electrical resistance <1Ω/10 mm) were implanted on dura over left frontal cortex (2.0 mm lateral to the midline, 1.5 mm anterior to the bregma) and the reference electrode was implanted over cerebellum (1.5 mm posterior to the lambda, on midline)[8,9] for EEG recording. Then, electrodes were fixed by using dental acrylic (Dental acrylic is a mixture of numerous alloys using for dental restoration). Rats were deeply anesthezied by ketamine (80 mg/kg) and xylazine (4 mg/kg) intraperitoneally (i.p.) After 10 days from the electrode replacement were fixed, 24 rats were divided randomly into 3 groups (n=6): Group A1, A2, A3.

Group A1 was administered saline i.p, Group A2 was administered 100 mg/kg doxycycline (Tetradox, Actavis) i.p. and, Group A3 was administered 200 mg/kg doxycycline i.p. The drugs were administered 30 minutes prior to pentylentetrazol (PTZ) (35 mg/kg, i.p.) injection. All groups were administered 35 mg/kg PTZ and EEG was recorded. EEG recordings were taken in awake rats in a special container after 5 minutes from PTZ administration.

The duration of EEG recording was 60 minutes (Figure 1).[10,11] The signals were amplified 10,000 times and filtered with a range of 1–60 Hz. EEG records were taken by using the Biopac MP 150 amplifier system and spike percentage was evaluated. Two clinical neurophysiologists scored the EEG data for spike percentage. We defined “spike percentage” as the percentage of 1-second bins with at least one spike-wave in them.[12] We affirmed the electrode location histologically following euthanization.
Determination of brain SOD activity
Total SOD activity was determined according to the method of Sun et al. The principle of the method is the inhibition of nitrobluetetrazolium (NBT) reduction by the xanthine-xanthine oxidase system as a superoxide generator. One unit of SOD was defined as the enzyme amount causing 50% inhibition in the NBT reduction rate. SOD activity was given as units per milligram protein (U/mg protein).

Statistical analysis
Results were expressed as a mean±standard error of mean (SEM). Data analyses were performed by utilizing SPSS version 15.0 for Windows. The RCS score, FMJ time were evaluated by one-way analysis of variance (ANOVA). Post-hoc Bonferroni test was utilized to identify differences between the experimental groups. The value of p<0.05 was accepted as statistically significant.

Results
Evaluation of brain lipid peroxidation (MDA)
In 100 mg/kg and 200 mg/kg doxycycline-treated groups, brain MDA levels (42.4±4.7 nmol/gr, 36.1±7.7 nmol/gr, respectively) significantly decreased when compared with saline-given group (93.7±4.8 nmol/gr, p<0.0001) (Figure 2).

Evaluation of brain SOD activity
In 100 mg/kg and 200 mg/kg doxycycline-treated groups, brain SOD levels (0.087±0.012 U/mg protein, 0.11±0.018 U/mg protein, respectively) significantly increased when compared with saline-given group (0.038±0.007 U/mg protein, p<0.001).

Measurement of brain lipid peroxidation (MDA)
Lipid peroxidation was determined in brain tissue samples by measuring malondialdehyde (MDA) levels as thiobarbituric acid reactive substances (TBARS). Briefly, trichloroacetic acid and TBARS reagent were added to the tissue samples, then mixed and incubated at 100 °C for 60 min. After cooling on ice, the samples were centrifuged at 3000 rpm for 20 min and the absorbance of the supernatant was read at 535 nm. MDA levels were calculated from the standard calibration curve using tetraethoxypropane and expressed as nmol/gr protein.
Evaluation of the seizures

The Racine seizure scale score and FMJ latency time were measured in saline and doxycycline-treated groups. RCS score was 5.6±0.2; FMJ latency time is 72.2±5.4 sec in saline-given group. 100 mg/kg and 200 mg/kg doxycycline treatment decreased RCS scores (4.8±0.2 and 3.8±0.2, p<0.01, p<0.000) and increased FMJ latency time (89.8±4.3, 115.5±5.6, p<0.05, p<0.000) when compared with saline-given group (Figure 3 and Table 1).

Evaluation of EEG records

Percentage of spikes were calculated as %73.3±4.7 in saline-given group. 100 mg/kg and 200 mg/kg doxycycline treatment significantly decreased spike percentage (%55.7±7.3 and %37.8±8, p<0.05, p<0.01) when compared with saline-given group (Figure 1).

Discussion

Doxycycline is one of the second generation tetracyclines that are known to prevent neuronal and oligodendroglial cell death in some in vitro models.[15] In previous studies it is presented that doxycycline has neuroprotective effects. [6] Though, the mechanism of epileptogenesis is not understood completely, the seizures have been reported to occur among patients with chronic inflammatory diseases.[16] Proinflammatory cytokines are induced rapidly in rodent brains during epileptic activity.[17] Seizures increase steady-state levels of mitochondrial O_2^{-}, a central mediator of oxidative stress.[18] The cytotoxic mechanism by which reactive oxygen species (ROS) induce neuronal damage may involve direct oxidative attack on cellular macromolecules and initiation or propagation of free radical chain reaction, ultimately leading to macromolecular damage.[19] Proteins, lipids and DNA are sensitive targets of ROS. As seizure induced inflammation is associated with free radical production and oxidative stress, there is also an increase in lipid peroxidation level.[20] Lipids are the major target of oxidative damage that occurs during seizures. Polyunsaturated fatty acids present in phospholipids of biological membranes are highly susceptible to oxidation by ROS.[21] Oxidation of fatty acids alters the structure of the cell membrane, cause changes in fluidity and permeability. Malondialdehyde is one of the products of lipid peroxidation and is therefore a good indicator of the rate of lipid peroxidation.[22]

The presence of lipid peroxidation following seizures has been demonstrated with MDA levels in our study. In doxycycline-treated group, MDA levels significantly decreased and SOD levels significantly increased in a dose dependent manner when compared with saline-given group.

Recent studies demonstrated that doxycycline has protective effects on ischemic and degenerative brain diseases.[23,24] Hydrogen peroxide (H$_2$O$_2$) is formed whenever O_2^{-} is generated because of its rapid conversion to H$_2$O$_2$ by superoxide dismutase (SOD) enzyme.[25] H$_2$O$_2$ has a less effect than superoxide group and it is counteracted for cell been converting by such as catalase, peroxidase and glutation. Causes of increases to effect of SOD contribute to render superoxide groups harmless.[26,27] Researchers have observed contradictory results in the levels of SOD, either in acute or chronic models.[28-30] SOD is one of the major antioxidants. In current study, SOD levels increased in doxycycline treated when compared with saline-given. This proves doxycycline’s anti-oxidant effect on PTZ induced seizure

Table 1. First Myoclonic Jerk’ (FMJ) latency time of groups

<table>
<thead>
<tr>
<th>Groups</th>
<th>FMJ latency time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTZ (70 mg/kg) and saline (B1 Group)</td>
<td>72.2±5.4</td>
</tr>
<tr>
<td>PTZ (70 mg/kg) and 100 mg/kg doxycycline (B2 Group)</td>
<td>89.8±4.3*</td>
</tr>
<tr>
<td>PTZ (70 mg/kg) and 200 mg/kg doxycycline (B3 Group)</td>
<td>115.5±5.6#</td>
</tr>
</tbody>
</table>

Data were expressed as mean±SEM. *p<0.05, **p<0.0001, ##p<0.01 (different from saline-treated group).
model of rats. In our study, we also detected both 100 and 200 mg/kg doxycycline's affirmative effects on seizures by EEG recordings, it decreases spike percentage and seizure severity.

In conclusion, following the treatment with doxycycline, latency time for FMJ significantly increased; RCS scores and spike percentage decreased in a dose-dependent manner. This results demonstrate that doxycycline preserves from PTZ-induced seizures and decreases oxidant stress which occurs because of seizures.

References
