Treatment of compensatory hyperhidrosis of the trunk with radiofrequency ablation

Radyofrekans ablasyon ile gövde kompansatuvar hiperhidrozun tedavisi

Süleyman DENİZ,1 Kuthan KAVAKLI,2 Hasan ÇAYLAK,2 Tank PURTUOĞLU,3 Ersin SAPMAZ,2 Gökhan İNANGİL,1 Abdulkadir ATIM,3 Sedat GÜRÖK,2 Ercan KURT3

Summary

Objectives: Although Endoscopic Thoracic Sympathectomy is a widely accepted treatment method for patients with palmar hyperhidrosis, compensatory hyperhidrosis of the trunk remains a challenging side effect of the procedure. No satisfactory treatment options for this side effect were available until now. In this study, we aimed to define a new procedure for the treatment of compensatory hyperhidrosis of the trunk.

Methods: A total of 10 patients admitted our institution for the treatment of compensatory hyperhidrosis of the trunk were enrolled in the study between November 2010 and January 2012 in a prospective manner. Sympathetic blockage was achieved via radiofrequency thermo-ablation technique. The results of treatment were evaluated via telephone calls.

Results: Ten patients (2 females, 8 males) underwent radiofrequency thermo-ablation of T6 sympathetic ganglion for compensatory hyperhidrosis of the trunk. The mean age was 29.2 years and the median duration of symptom was 10.5 months. The median follow-up period was 14 months. Six of ten patients (60%) were treated successfully. There was no procedure related complication.

Conclusion: The radiofrequency treatment for patients with compensatory hyperhidrosis of the trunk is an alternative option with promising results.

Key words: Compensatory hyperhidrosis; radiofrequency, sympathectomy.

Anatür sözcükler: Kompansatuvar hiperhidroz; radyofrekans; sempatektomi.
Introduction

Compensatory hyperhidrosis (CH) of the trunk is a challenging side effect of palmar hyperhidrosis treatment. Although satisfaction of patients, who were treated surgically for their local excessive sweating, is almost exclusively related to this side effect, its prevalence following endoscopic thoracic sympathectomy is quite high ranging between 14% and 90% in different series. In about 30% of all cases CH was reported to be severe.[1]

Currently, the main objective of hyperhidrosis treatment has shifted from improving the efficiency of treatment to the avoidance of CH. The level and the number of sympathectomized ganglions are the most well known factors to prevent CH.[2-5] Clipping of the sympathetic chain is an alternative option for sympathetic blockage which can be removed when CH occurred.[6,7] However, an experimental study has showed that the procedure is not fully reversible even after removal of clips so CH persists in most of the cases.[8]

Injection of botulinum toxin-A to the focal skin area was found to be a well-tolerated, effective, and safe method for CH. However, this treatment option does not provide a permanent relief.[9]

Proper management of CH following sympathectomy is of paramount importance. In this study, we aimed to present a new treatment option for CH.

Materials and Methods

Patients

A total of 219 sympathectomy procedures at various levels for patients with 97 palmar (T4), 68 axillary (T3 or T2-3) and 54 palmar-axillary (T3-4) hyperhidrosis were performed between January 2006 and December 2011. Among these, 10 patients (7 patients T2-3, 2 patients T3 and 1 patient T3-4) who developed severe CH of the trunk were enrolled in the study between November 2010 and January 2012. CH were evaluated according to the classification of Purtuloglu et al. (Table 1). All patients gave written informed consent and the study was approved by local ethic committee.

Surgical procedure

For the sympathectomy or sympathicotomy, all of the patients underwent general anesthesia via double lumen endotracheal intubation. The patients were in semi-fowler position. Following single lung ventilation, a one cm insicion was performed in the midaxillary line at fifth intercostal space and a five mm 0° thoracoscope and endoscopic hook cautery were introduced from the insicion. The sympathetic chain was cauterized for sympathicotomy. A 28 F chest tube was placed to evacuate air between plevral surfaces. When pneumothorax evacuation was completed, chest tube was removed. Control chest X-rays were obtained at early postoperative period. The procedures were performed by different surgeons qualified at this procedure.

RF technique

For the treatment of compensatory hyperhidrosis of the trunk, normal prothrombin time and platelet counts were provided from all patients. Following an insertion of peripheral i.v. catheter, the patients were monitorized with ECG, oxygen saturation (SPO2) and non-invasive blood pressure. The sedation was achieved with 0.02 mg/kg i.v. midazolam. Patients were in prone position. The RF application was performed to all patients as detailed below: following subcutaneous local anesthetic infiltration, Cosman RFG-1A Lesion Generator (Cosman Medical, Inc., Burlington, Massachusetts, USA) was used for RF thermo-ablation (Figure 1). Under fluoroscopic guidance, 10-cm length and 5-mm diameter active

<table>
<thead>
<tr>
<th>Classification</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>No compensatory hyperhidrosis</td>
<td>--</td>
</tr>
<tr>
<td>Mild</td>
<td>Sometimes noticeably sweaty and sometimes not sweaty</td>
</tr>
<tr>
<td>Moderate</td>
<td>Always aware but not troublesome, or troublesome but controlled by clothing</td>
</tr>
<tr>
<td>Severe</td>
<td>Causes embarrassment or regret over having had endoscopic thoracic sympathectomy</td>
</tr>
</tbody>
</table>
cannula of RF device was advanced to T₆ sympathetic ganglion (Figure 2). When the probe reached to an appropriate point, the level of the cannula was ascertained with diffusion of injected radiopaque material over the parietal pleura. Then, the electrode of RF device was placed in the cannula and the impedance was kept between 220-400 ohm. In order to check the position of the cannula neurophysiologically, paresthesia observed with 50 Hz sensory stimulation and 0.3-0.5 V. No motor contraction observed with 2 Hz motor stimulation and 1.3-1.5 V. After this neurophysiologic test, RF thermocoagulation was applied at 75°C for 90 seconds. Before thermocoagulation, 2 ml of 2% lidocaine was applied into the cannula. All patients were followed for development of potential complications such as pneumothorax, bradicardia and major hematoma for two hours.

We have contacted with all patients via telephone. Patients were questioned about improvement of their symptoms (dry, fairly dry, not dry) and were asked to grade their satisfaction rate on a scale from very satisfied, satisfied to not satisfied. All the interviews were recorded.

Results

Eight male and two female patients enrolled in the study. The mean age was 29.2 years (range, 20-49 years) and the median duration of symptom was
Treatment of compensatory hyperhidrosis of the trunk with radiofrequency ablation

10.5 months (range, 6-48 months). The follow-up was complete for all patients and the median follow-up period was 14 months (range, 6-26 months).

Following RF application symptoms were improved in six patients (60%) while in the remaining four patients RF thermo-ablation was not satisfactory. The characteristics of patients and treatment results were summarized at Table 2. No procedure related early or long term complications were observed.

Discussion

Compensatory hyperhidrosis of the trunk is a frequent and troublesome side effect of hyperhidrosis treatment such that the possibility of CH has held physicians back from more effective therapy options. The issue is so relevant that several studies had been conducted to prevent or cure this unwilling effect.

The exact mechanism of CH has not been fully understood yet. Chou et al.\(^6\) deemed the changes in sweating pattern as a reflex response of the sweating center of hypothalamus and recommended the term ‘reflex sweating’ instead of compensatory hyperhidrosis. In study they reported a higher prevalence of severe CH following T2 sympathectomy and proposed the afferent negative feedback sympathetic signal as the operating factor.\(^6\) The level of sympathectomy is one of the most important factors in development of CH with higher levels related to higher risk. In another study Wolosker et al.\(^10\) performed T4 sympathicotomy on 46 patients for palmar hyperhidrosis and none of the patients experienced severe CH. Purtuloglu et al. studies also showed similar results.\(^11,12\)

Clipping is a sympathetic blockage technique which has been performed widely for the treatment of hyperhidrosis. It is similar to other sympathetic activity denervation techniques such as coagulation, cutting and segment removing in regard of safety, efficiency and feasibility.\(^13\) This technique is of worth due to its reversible nature and possible role in treatment of CH. The advantage of this technique includes removal of the clips in a case of CH development. However the procedure is not fully reversible hence the regeneration of sympathetic chain is limited so CH may persist even after clip removal. Loscertales et al.\(^9\) observed no nerve regeneration following clip removal in their experimental study and argued against offering clipping method to patients as a reversible option. In a clinical study Sugimura et al.\(^7\) reported improved CH symptoms in 15 of 31 patients (48%) after removal of clips. The improvement of CH can not be fully predicted after reversal. So this clinical approach is far away from being a satisfactory treatment option.

Topical glycopyrrolate is a choice of treatment for different types of local hyperhidrosis. The mechanism of glycopyrrolate in the hyperhidrosis treatment is via prevention of acetylcholine-induced stimulation of sweat gland receptors. In a prospective clinical trial which was performed by Cladellas et al.\(^14\) topical glycopyrrolate administration to the compensatory hyperhidrosis area was found effective in controlling symptoms. Long-term efficiency and safety results of treatment is not known and anticholinergic side effects of glycopyrrolate such as dry mouth, visual disturbance, urinary retention, urgency, flushing, and constipation should be kept in mind. In our study, we have a 14 month median follow-up and the effect of the treatment was persistent over this period. We observed no procedure related complication.

Intradermal injection of botulinum toxin-A is another choice of treatment for local hyperhidrosis such as palmar or axillary. Compensatory hyperhidrosis can be accepted as a local side effect and can be treated with botulinum toxin-A. Although the technique is well-tolerated, effective, and safe method, the cost and discomfort due to injections limit its widespread use. Subsiding of treatment effect is another disadvantage.\(^9\) So this option should be regarded as a temporary approach for symptom-relief, not a definitive treatment option.

Surgical treatment attempts had been reported also. In the single case report, the patient underwent injection of botulinum toxin-A via VATS and after two months following intervention, he underwent thoracotomy.\(^15\) The treatment approach is very aggressive for a non-life threatening disorder like CH. Our treatment procedure is also invasive but it does not require general anesthesia and is performed on an out-patient basis.
Current treatment options in treatment of CH were limited secondary to their unpredictable efficiency with temporary course and untoward side effects. Present report proposes RF application as an alternative method which provides long term symptom relief with high safety profile.

Conclusion

Radiofrequency thermo-ablation can be an alternative technique in the treatment of CH of the trunk with high safety profile, success rate and out-patient performing. The procedure is feasible and has leading nature in surgical area.

Conflict-of-interest issues regarding the authorship or article: None declared.

Peer-review: Externally peer-reviewed.

References